To Seq, or Not to Seq

Seq—shorthand for “sequence”— has become a more recognizable term thanks to a novel and provocative genomics initiative called the BabySeq Project. The project, officially launched in May 2015, was designed to explore the impact of whole-exome sequencing (WES) on newborn infants and their families. A randomized, controlled trial to sequence healthy and sick infants and then provide sequencing information, it is the first of its kind. Those infants randomized to receive WES undergo genetic sequencing of all protein-coding genes and analysis of about 1,700 genes implicated in childhood health, along with 18 years of follow up genetic counseling.29813751-nov-2-blog-post-nicole-600x470-web

The project is directed by Robert C. Green, geneticist and physician at Brigham and Women’s Hospital, Harvard Medical School and the Broad Institute, and Alan H. Beggs of Boston Children’s Hospital and Harvard Medical School. Funding, totaling $25 million, comes from the National Institute of Child Health and Development and the National Human Genome Research Institute. Continue reading

Rapid Evolution in Response to Rapid Climate Change?

21491767_lIn celebration of Earth month, Environmental Education Week, Earth Day and National DNA Day (celebrated this week in many nations),  we have a Science 360 video that highlights the work of Drs. Bradshaw and Holzapfel to explore climate change-driven genetic shifts in the Pitcher Plant Mosquito. It’s a fascinating and thought-provoking question these scientists are trying to answer. You can read more of the latest work at their laboratory web site.  What are you doing to celebrate Earth Day/Environmental Education Week activities?

The Stuff of Life: A genetics course in a comic book

Copyright by Mark Schultz, Zander Cannon and Kevin Cannon from “The Stuff of Life” (2009)

A few years back, when my wife and I were moonlighting as amateur comic artists, we would set up our table at local comic conventions. At one of these, we found ourselves sitting not too far from a charming comic artist by the name of Zander Cannon. His black-and-white artwork was gorgeous to behold. But what really drew us to him was a modest hardbound book on his table, entitled The Stuff of Life: A graphic guide to genetics and DNA that he co-illustrated with Kevin Cannon and whose script was written by Mark Schultz. It turns out that illustrating educational comics is one of Zander’s true passions. Of course, we bought our own copy. Continue reading

The Ongoing Legacy of the Human Genome Sequence

When the first draft sequence of the human genome was announced, I was a research assistant for a lab that was part of the Genome Center of Wisconsin where I created shotgun libraries of bacterial genomes for sequencing. Of course, the local news organizations were all abuzz with the news and sought opinions on what this meant for the future, including that of the lab’s PI and oddly enough, my own. While I do not recall the exact words I offered on camera, I believe they were something along the lines of this is only the first step toward the future of human genetics. Ten years later, we have not fulfilled the potential of the grandiose words used to report the first draft sequence but have gained enough knowledge of what our genome holds to only intrigue scientists even more.

Continue reading

Worms with the Guts to Play Games of Chance: Stochastic Effects and Binary Output in Gene Expression

How do you explain the phenomenon of incomplete penetrance, which happens when individuals carrying an allele for a given phenotype don’t always express the phenotype? For instance, individuals carrying the same mutation associated with a genetic disease do not always develop that disease.

Sometimes environment influences gene expression and plays a role, or other genetic differences among the individuals of a population can affect the expression of the gene in question. But, incomplete penetrance is also observed in model organisms that are raised in controlled environmental conditions and that have “identical” genetic makeup.

Biologists have proposed that random variability in gene expression could account for such events, and in clonal populations of microorganisms random variation in gene expression may even be important for generating genetic variability. However, in more complex organisms that have specific cell types organized into tissues and organs, gene expression needs to be highly controlled for the organism to develop properly. So, if there are random fluctuations in gene expression, somehow they need to be “buffered” in normal development.

Until the recent Nature paper published by Raj et al. (1), little experimental data existed to support the theory that essential developmental pathways include mechanisms to buffer the effects of random variations in gene expression. Continue reading