“GenEthics” – The Implications of Genomic Data

I majored in genetics because I love Punnett Squares. Don’t get me wrong, I was fascinated by the groundbreaking research going on in fields like oncology and agriculture, but there was something about the simple and logical nature of calculating inheritance patterns that really drew me in. At the time when I confusingly wandered into my advisor’s office to make this life changing academic decision, I had no idea that this degree would help me see the more complicated, “gray area”, of science, changing the way that I look at the world today.

What is “GenEthics” ?

As I’m sure you’ve already guessed, “GenEthics” is the intersection between the fields of genetics and ethics. A broad term involving questions related to the implications of a variety of different topics in genetic research; “GenEthics” covers everything from the modification of stem cells, to gene therapy and GMOs. Since this term encompasses such a large array of topics, I’m going to focus on some of the ethical questions related to your genome.

Genomic data and its applications

If you’ve ever heard of 23andMe or Ancestry.com then you’ve already had an introduction to genomic data. These direct-to-consumer genetic testing companies are a result of advancements in technology that have made the genotyping process relatively cheap and quick. When you submit a sample, they send it to a lab, extract the DNA, and test it for various markers. What’s returned to you is a report of what markers (alleles) you do and don’t have. These reports can tell you everything from what percent German you are, to your status for any of the many alleles of several genes that may increase risk for Alzheimer’s disease. Genomic data has affected a variety of fields; knowledge of the genome has allowed us to catch famous criminals like the Golden State Killer and has provided us with diagnostic markers for serious diseases. But even with all the good that genomic data has done and will do, there is a “gray area” where many questions regarding safety, equality, and privacy lie.

Safety – Should everyone have their genomes sequenced?

Some believe this is the future of healthcare, that everyone will have their genomes sequenced at birth and put into a national database. This would have amazing implications in the research world; access to endless data, and the ability to form conclusions about everything from human disease to intelligence.

This question also brings up a plethora of others, some pertaining to identity safety. In particular, what if this fictitious database is hacked? There have already been smaller-scale database breaches, the most recent being on the MyHeritage website. These breaches are potentially dangerous; the entirety of your personal health information is housed in your genome. With proper scientific guidance, hackers could infer your: gender, ethnicity, disease status, etc. DNA is not like a credit card, there is no way to obtain a new set of genes.

Equality – How do we ensure that everyone benefits from the advancements that genomic data has to offer?

There are many studies being done with the goal of eradicating cancer using precision medicine. This involves finding common tumor-causing variants in patients’ DNA sequences, and treating them based on their genes. These types of studies have the potential to contribute greatly to the field of personalized medicine, but caution needs to be taken to ensure that multiple populations are represented in the study. Ethnic groups have evolved on separate continents and their genetic sequences contain different variations, one set of conclusions about a disease might not apply to all populations.

Privacy: Who has a right to your genetic information?

The Genetic Nondiscrimination Act (GINA) was passed in 2008 to prevent your genetic test results from affecting your qualification for health insurance, or employment prospects. However, this is but a scratch on the surface of possible genomics-related legal issues; the ownership of a DNA sequence is a complete question mark at this time. There are no laws regarding an organization or family members’ right to an individual’s sequence.

Genomic data has the ability to save lives and prevent devastating disease, but it also can cause disputes within families, and between organizations and individuals. The question of DNA ownership brings up many others: if you test positive for a condition, should you inform other at risk family members? Do you have sole claim on your DNA when you have family members that share most of your sequence? When you submit your DNA to an organization what ownership rights do they have?

The Future…

We have come a long way since completion of the Human Genome Project back in 2003, and we will continue to make amazing advances thanks to the field of genetics. The questions I have posed are just a few that lie in the “gray area” we will be venturing into in the future. These questions may seem as if they are just for researchers, doctors, and lawyers, but they really are for everyone. The social and ethical implications of science affect us all; it’s important that we all join the conversation!

Questions of Genome Privacy and Protection

In April 2018, law enforcement officials announced the arrest of a suspect in the Golden State Killer case (New York Times ). Shortly after the announcement, those same law enforcement officers explained that detectives had used a public forensic genealogy web site to help identify the killer.

What does it mean when a law enforcement agency accesses a public genetic genealogy database to search for a suspect in a crime? Continue reading

The Age of the Genome: Commercial DNA Sequencing, Familial Searching and What We Are Learning

Crowd of people at the street, city center

All of these people are 99% the same at the genomic level. The individuals of the human species are far more alike than different.

There are 3 billion (3,000,000,000) bases in my genome—in each of the cells of my body. Likewise, Johanna, the writer who sits next to me at work also has 3 billion bases in her genome. Furthermore, our genomes are 99% the same. Still, that’s a lot of places where my genome can differ from hers, certainly enough to distinguish her DNA from mine if we were both suspected of stealing cookies from the cookie jar. The power of discrimination is what makes genetic identity using DNA markers such a powerful crime solving tool.

The completion of the human genome project in 2003 ushered in a tremendously fast-paced era of genomics research and technology. Just like computers shrank from expensive, building-filling mainframes to powerful hand-held devices we now call mobile phones, genome sequencing has progressed from floor-to-ceiling capillary electrophoresis units filling an entire building to bench top sequencers sitting in a corner of a lab. The $99 genome is a reality, and it’s in the hands of every consumer willing to spit into a tube.

Commercial DNA sequencing services are promising everything from revealing your true ancestry to determining your likelihood to develop dementia or various cancers. Is this progress and promise or is it something more sinister?

As it turns out, that isn’t an easy question to answer. What is probably true is that whole genome sequencing technologies are being put into the hands of the consumer faster than society understands the ethical implications of making all of this genomic information so readily available. Continue reading

A Cold Case, A Mystery, and DNA

“How do you like the name Jack?” the woman on the phone asked.

41731849 - soft focus and blurry of baby hands vintage style color effectOn April 26, 1964, a nurse came into the hospital room of Dora Fronczak, who had just given birth to her young son, Paul. She told Mrs. Fronczak that it was time to take the baby to the nursery (at that time newborns did not stay in the room with the moms), took the baby, and left. A few hours later, another nurse came into the room to take young Paul to the nursery. It was then that everyone realized a mother’s worst fear: Her infant had been stolen.

Authorities were able to determine how the woman left the hospital and that she got into a cab, but they were never able to find the woman. However in 1965, a small toddler-aged boy was found, abandoned outside a store in New Jersey. Blood tests were not inconsistent with him being Paul Fronczak (DNA testing was not available), and there were no other missing children cases in the area that were matches. The little boy was sent to Chicago as Paul Fronczak and the case was closed.

However, as an adult Paul Fronczak, began to suspect that the couple who raised him were not his biological parents, and in 2012 Paul underwent DNA analysis to test his suspicions. The results showed that indeed, he was not the biological son of Dora and Chester Fronczak. His next step was to enlist the help of a genetic genealogist to assist him in finding his true biological parents and his identity.

By conducting “familial searches” using commercially available DNA databases like 23andMe and AncestryDNA and many resources, the genealogist’s group found a match to his DNA on the east coast. Further ground work, discovered that this family was indeed Paul’s…now Jack.

The knowledge of Jack’s true identity, didn’t bring with it a joyous union of the adoptive family who had raised and loved Jack (as Paul) with the biological family who had pined for him over the years as many might imagine. Continue reading