Using the Flu as an Educational Opportunity

Illustration from David Macaluay's "The Way We Work", showing visitors throwing paper airplanes down air passages through the trachea.
Illustration from David Macaluay’s “The Way We Work”, showing visitors throwing paper airplanes down air passages through the trachea.

I woke up this Monday feeling sore, with a bad cough. Tuesday I barely had the energy to drag myself to a laptop to write this. It’s a familiar story for a lot of people around the United States right now, if the map at the top of this article is to be believed.

Yep, flu season is upon us in full swing, and in order to explain to my eight-year-old son what this means, I turned to that most awesome of all my medical reference books: David Macaulay’s The Way We Work. As you can probably guess from the title, this book provides a tour through all the major systems – circulatory, gastrointestinal, nervous, etc – that make up a human being, and contains several additional sections on health and disease. Like other David Macaulay books, including its more famous predecessor, The Way Things Work, David has meticulously illustrated the entire text with his colorful and quirky style. Diagrams of cross sections of tissue are visited by tiny tourists on observation platforms, schematics of biological systems are represented as bustling factories and conveyor belts, and sometimes even disembodied skeletons or diagrams of circulatory systems converse wryly with one another. My son eats all this up, and that’s good, as Macaulay’s light and humorous style comes with a serving of serious and well-presented content. I’ve always had a thing for the marriage of art and science, and this book is as good an example of this happy union as I can think of. Continue reading “Using the Flu as an Educational Opportunity”

Rocking Robotics With Kids and LEGO® Bricks

lego boysIf you happened to wander accidentally onto Madison College campus on the morning of Saturday November 9, you’d be excused for believing you’d stumbled into a giant middle school summer science camp. Teams of kids, aged anywhere between 7 and 14 wearing coordinated team t-shirts had the run of the place, putting finishing touches on their elaborate science project displays and robotic creations. Scattered across several locations around the campus, and providing a focus for the milling masses of hundreds of kids, their parents, coaches and spectators were several ping-pong sized tables, each one with an identically laid out obstacle course built entirely out of LEGO® bricks. From time to time a team of kids was summoned by a referee, and the real excitement began.

On getting a “thumbs up” from the team, the referee would set off a buzzer – the team, made up of anywhere from two to ten kids, would run up to the table. A couple of the kids set their robot – built around a LEGO® Mindstorms® “smart brick” – down nervously but quickly in a designated corner. One kid checked that the proper attachments to the robot were in place, the other verified that the right program was dialed in. They aligned their creation carefully on the table, and hit a big orange button on the body of the robot to launch it. The robot then trundled away – on wheels or treads depending on how the team conceived it – and pushed toy LEGO® trucks to designated zones on the board, wrecked some LEGO® buildings while carefully raising others above an imagined flood, rescued little LEGO® minifigs, and reunited LEGO® family members with each other and with their pets, also built of tiny LEGO®s. The robot returned to its home base as often as needed where the kids could tinker with it, switching out attachments and programs. Two and a half tense and breathless minutes after starting, the second buzzer sounded indicating the end of the round, and the team would erupt into a spontaneous cheer as its results were announced by the presiding judges.

Welcome to the annual BadgerLand Regional Tournament, a part of the FIRST® LEGO® League competition, one of many such events held across the world every year since 1998. Continue reading “Rocking Robotics With Kids and LEGO® Bricks”

Vignettes From the Life of a Mobile Developer

Photo credit: https://www.flickr.com/photos/lincolnian/
Photo credit: https://www.flickr.com/photos/lincolnian/

To celebrate the release of iOS 7 and the new batch of iPhones, I’d like to share some highlights in the life of a mobile developer at Promega.

Promega was quick on the uptake when the iPhone was first released, and immediately spotted a unique opportunity to reach out to scientists in this new medium. A project quickly coalesced to create an iPhone app that combined the Protocols and Applications guide, easy access to our multimedia library, and the most popular Biomath Calculators. Promega thus made news as the first biotech company to release a resource-rich mobile app.

I, like many other developers, fell into writing code for smartphones and tablets almost by accident: When the iPad made its appearance in 2010, I was asked to see what it would take to make a version of the app for the then-brand new tablet from Apple.

As a freshly hired graphic designer with a background in computer science, I thought, I’d really just be creating the user interface for the tablet version of the app, and the programming can’t be all that involved, can it? The app’s already written, I’m just effectively re-potting it, right? Also, the practice of programming had changed significantly since my college days: documentation could easily be found online and extensive online communities of programmers, such as stackoverflow.com, now provide excellent peer support.

In spite of all this, the project proved more involved than I had anticipated. Continue reading “Vignettes From the Life of a Mobile Developer”

Analog is the new digital?

Photo credit: Niklas Roy https://picasaweb.google.com/116020019668259353077/CardboardComputerWorkshopAtHfGOffenbach#5847047713177417682
Playing “Speedway PRO 1000 at the Cardboard Computer Workshop” Photo credit: Niklas Roy
There are few areas of human endeavor as rife with error and retrospective hilarity as futurology, the dark art of predicting technological trends. So instead of trying my hand at proclaiming a new direction in human computer interactions, I thought I’d simply report on a couple of projects at the intersection of art and computing that caught my attention at the Eyeo Festival in Minneapolis, a visualization conference held there this past June. Perhaps there’s something more here than separate data points, but I’ll leave that inference up to the reader. Continue reading “Analog is the new digital?”

OneZoom, The Fractal Phylogenic Tree Explorer

OneZoom_zommed_out

I am reminded daily that we live in an age of wonders. To find out where somebody lives, I plug in their address into any one of a number of mapping web applications, and instantly see their neighborhood, detailed satellite views, driving directions, even gas stations nearby should I need to stop by one. I can similarly figure out who people are and how I’m connected to them with a variety of social networks, and all these data are delivered painlessly: No flipping through gargantuan phonebooks, no need for obscure incantations to formulate database queries.

Scientific visualization has been catching up in fits and starts to this new world of ubiquitous and trivially accessible relationship data. This is partly due to the inherent complexity of scientific data, and partly due to the vastly smaller user base that would benefit from such an endeavor, and the limited resources available to researchers. There are certain scientific datasets, however, that are eminently suited to benefit from this new visualization paradigm.

Consider the phylogenetic tree of living creatures: representing how different species are related to each other. Long ago in school, for example, I was taught that tetrapods (vertebrates, except for the fishes) were grouped into amphibians, reptiles, birds and mammals, pretty much in that order and with very little sense of how little or much diversity each of those groups encompassed. Since then, genetic sampling has revolutionized our understanding of the tree of life. However I’m pretty confident that kids are still taught about amphibians, reptiles, birds, and mammals, in pretty much that order. Perhaps somebody mentions that the dividing lines aren’t quite as clear-cut anymore, but that probably just muddles things even more.

James Rosindell and Luke Harmon took on this problem of visualizing the modern, genetics-based understanding of phylogeny in a way that is accessible to the general public. Their approach was inspired by the navigation conventions of Google maps, and by the aesthetics of fractals, especially the tree-like L-systems. Continue reading “OneZoom, The Fractal Phylogenic Tree Explorer”

Bacterial transformation and counting colonies for grade school students

Our experimental setup: Microbe plushies, Lego DNA, plates, iPhones and makeshift stand, ready to go.
Our experimental setup: Microbe plushies, Lego DNA, plates, iPhones and makeshift stand, ready to go.
A few weeks ago, our elementary school held its annual science fair. Owing to the greater-than-usual number of scientists among the parents, the halls of this event were lined with tables staffed by said parents, showing off the wonders of science, tech, and especially biotech. There were at least three stations devoted to various aspects of stem cell research, and the table next to us had kids run simple nucleic acid extractions from wheat germ using detergent and alcohol – my son loved that one, as he pulled out the stringy goop with a q-tip at the end of the process.

My wife and I contributed to the festivities by putting together a presentation on bacterial transformation. I was just about finished working on a colony counter iPhone® app for Promega, so I figured why not try it out in the field: Print out some colorful ersatz bacterial plates, have the kids count the colonies using the app (yay, touch screens!) and maybe teach them something about genetic engineering along the way.

Our setup turned out to be a lot of fun to run, and quite popular to boot. It went roughly like this: Continue reading “Bacterial transformation and counting colonies for grade school students”

Science in the Service of Art

Three artists who use science as their starting point.

Galapagos Rice-Rat from 'The Zoology of the Voyage of H.M.S. Beagle'. This media file is in the public domain in the United States. This applies to U.S. works where the copyright has expired, often because its first publication occurred prior to January 1, 1923.
Galapagos Rice-Rat from ‘The Zoology of the Voyage of H.M.S. Beagle’ This media file is in the public domain in the United States. This applies to U.S. works where the copyright has expired, often because its first publication occurred prior to January 1, 1923.

My recent blog conversation (blogversation?) with Michele about the book The Where, The Why and The How stirred me up to think some more about the topic of science-flavored art. That book was full of delightful examples of artists using science as their inspiration; however no matter the topic or style of art, the illustrations never strayed from _illustrating_ the science they referenced. Some were more fanciful than others, but none questioned their basic intent.

Now, in literature there’s an entire genre dedicated to “science flavored” writing that ultimately doesn’t serve to illustrate any actual science concepts. I’m speaking of Science Fiction, of course, and while some early entries in the SF canon erred on the side of scientific accuracy, later practitioners of the genre took great liberties with the science, always ensuring that it served their literary goal and not vice versa. I was raised on a steady diet of Stanisław Lem books, and probably as a result tend not to demand much realism from my fiction.

On thinking about it, I’m rather surprised that the same is in general not true of art. Continue reading “Science in the Service of Art”

How Is a Molecular Biologist Like a Computer Programmer?

My wife, the molecular biologist, tells me she spends her days “at the bench” and “in the hood.” There, she works with cells, plasmids, RNA, enzymes and buffers, incubators, water baths, columns, gels, filters and spectrophotometers. She transfers various quantities of liquids into and out of plastics and glassware. At least, that’s what I understand when I ask her, “how was your day?”

I can’t really understand her fascination with all of this, but then I don’t have to: I’m an app developer, a programmer who designs and builds applications for smartphones and tablets. My work day consists of sitting in front of a laptop, cranking out code. There’s the occasional break afforded by meetings and presentations, writing up design documents, sketching out how a user interface might look like. Then it’s back to the computer, and programming.

But in spite of these differences, there is a critical aspect of my wife’s work that, whenever she speaks of it, I immediately recognize in my own professional life: We both rely extensively on kits and components, and doing so profoundly affects the way that we approach our jobs. Continue reading “How Is a Molecular Biologist Like a Computer Programmer?”