A Proline- and Alanine-specific protease is complementary to trypsin in proteomics applications Diana Samodova*, Chris Hosfield, Christian N. Cramer, Maria V. Giuli, Giulia Franciosa, Enrico Cappellini, Michael Rosenblatt, Diana Samodova

Christian D. Kelstrup, Jesper V. Olsen

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark diana.samodova@cpr.ku.dk

Introduction and goals

• Trypsin is the protease of choice in bottom-up proteomics¹;

• Too few or too many tryptic cleavage sites (R and K) in some of the proteins (e.g. collagen)²;

• Trypsin is mainly active at pH 7-9, while in some cases lower digestion pH is required (e.g. disulfide bond mapping)³;

 Ambiguos phosphosite localization in tryptic phosphopeptides containing basophylic phosphorylation sites⁴;

Orthogonal peptides are required for *de novo* protein sequencing⁵;

• Proteases alternative to trypsin are desired for specific proteomics applications.

The Goal: to test the application of a **proline- and alanine-specific protease**, which is active at **pH1.5** in **2h** of protein digestion, to a series of proteomics investigations comprising digestion of **proline-rich** proteins, **phosphorylation** profiling, disulfide bond mapping and *de novo* protein sequencing.

Results

N3ICD sequence coverage PEGFALHKDIAAGHKGRREPVGODALGMKNMAKGESLMGEVVTD NDSECPEAKRLKVEEPGMGAEEPEDCROWTOHHLVAADIRVAPATALTPPOGDADADGVD /NVRGPDGETPI MI ASECGGAI EPMPAEEDEADDTSASIISDI ICOGAOI GARTDRTGET HLAARYARADAAKRLLDAGADTNAQDHSGRTPLHTAVTADAQGVFQILIRNRSTDLDA STALILAARLAVEGMVEELIASHADVNAVDELGKSALHWAAAVNNVEATLALLKN GANKDMQDSKEETPLFLAAREGSYEAAKLLLDHLANREITDHLDRLPF RDVAOERLHODIV RLLDQPSGPRSPSGPHGLGPLLCPPGAFLPGLKAVQSGTKKSRRPPGKTGLGPQGTRGRG KLTLACPGPLADSSVTLSPVDSLDSPRPFSGPPASPGGFPLEGPYATTATAVSLAQLGA RAGPLGRQPPGGCVLSFGLLNPVAVPLDWARLPPPAPPGPSFLLPLAPGPQLLNPGAPV ŚPQERPPPYLAAPGHGEEYPAAGTRSŚPTKARFLRVPŚEHPYLTPSPEŚPEHWASPŚPF

LSDWSDSTPSPATATNATASGALPAQPHPISVPSLPQSQTQLGPQPEVTPKRQVMA

P Trypsin+ProAlaprotease

• 3x more unique phosphopeptides and 2x more class I localized phosphosites in ProAla-digests, compared to trypsin.

ProAla-

7 Conclusions and Future perspective

ProAla-digestion showed an improved phosphorylation profiling in purified proline-rich single protein N3ICD, compared to trypsin, as well as allowed to increase total sequence coverage of the protein by combining peptides generated by both proteases (4). A similar increase in total sequence coverage was observed for non-collagenous proteins in Pleistocene mammoth bone sample, allowing to cover more species-specific amino acid substitutions relevant for phylogenetic placement. Notably, cleavage also occurs at the C-terminus of hydroxyproline, facilitating efficient digestion of bone collagen and improving the identification of non-collagenous bone proteins (3). Using ProAla-protease at pH 1.5 in 2h of protein digestion potentially allows to decrease scrumbling of the disulfide bonds. We observed a higher digestion efficiency of a non-reduced and non-denatured NIST mAb and almost complete coverage of its sequence and disulfide-containing fragments, compared to trypsin. This demonstrates ProAla-protease as a powerful tool for efficient disulfide bond mapping (6). Finally, we performed a near-complete *de novo* sequencing of N3ICD protein, using a combination of ProAla- and tryptic peptides (5). Taken together, this demonstrates the broad utility of ProAla-protease for numerous proteomics applications. A potential future application of the protease, not covered in this study, is the reduction of artificially-introduced deamidation at low pH of proteolytic digestion⁶.

8 References and Acknowledgements

4. Huesgen, P. F. et al. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat. Methods 2015, 12, 55-5. Guthals, A., Clauser, K. R., Frank, A. M. & Bandeira, N. Sequencing-grade de novo analysis of MS/MS triplets (CID/HCD/ETD

6. Cao. M. et al. An Automated and Qualified Platform Method for Site-Specific Succinimide and Deamidation Quantitation Using Low-pH

Work at The Novo Nordisk Foundation Center for Protein Research (CPR) is funde in part by a generous donation from the Novo Nordisk Foundation (Grant number NNF14CC0001). D.S., J.V.O and E.C are supported by the Marie Skłodowska-Curie European Training Network (ETN) TEMPERA, a project funded by the European Union's EU Framework Program for Research and Innovation Horizon 2020 under Grant Agreement No. 722606.

