Beer Is Complicated: Proteome Analysis via Mass Spectrometry

still life with a keg of beer and draft beer by the glass.The art of brewing alcoholic beverages has existed for thousands of years. The process of beer brewing begins with barley grains, which are malted to allow partial germination, triggering expression of key enzymes. The germinated grains are then dried and milled. Next, starch, proteins, and other molecules are solubilized during mashing. During mashing, solubilized enzymes degrade starch to fermentable sugars, and digest proteins to produce peptides and free amino acids. Fermentable sugars and free amino acids are required for efficient yeast growth during fermentation.

After the mash, the wort is removed, and hops are added for bitterness and aroma, and the wort is boiled. After boiling, the wort is inoculated with yeast, and fermentation proceeds to produce bright beer. Typically this bright beer is then filtered, carbonated, packaged, and sold. Many proteins originating from the barley grain and the yeast are present in beer, and these have been reported to affect the quality of the final product. However, some of the biochemical details of this process remain unclear. To better understand what happens during the various steps of the brewing process,  Schultz et al. used mass spectrometry proteomics to perform a global untargeted analysis of the proteins present across time during beer production and described this work in a recent paper (1). Samples analyzed included sweet wort produced by a high temperature infusion mash, hopped wort, and bright beer. Continue reading