DNA Typing: Useful Tool to Solve Crimes or Invasion of Privacy?

DNA in a test tubeThis year marks the tenth anniversary of the complete human genome sequence. The Human Genome Project revealed a surprising fact: Only 1% of our genome encodes proteins. This equates to a paltry 20,000–25,000 genes. The function of the other 99% of our DNA remained a mystery. Shortly after the sequencing was completed, the National Human Genome Research Institute (NHGRI) launched a new research project, termed the Encyclopedia Of DNA Elements (ENCODE), to identify DNA elements and try to find a purpose for the other 99% of our DNA. This project has contributed greatly to our understanding of the human genome, as documented in the 30 ENCODE-related papers published in Nature, Genome Research and Genome Biology in 2012 (see the Nature web site. However, the ENCODE project is being used in an unforeseen way: to support an appeal to the recent US Supreme Court decision about the constitutionality of collection and analysis of DNA from arrestees.

Continue reading “DNA Typing: Useful Tool to Solve Crimes or Invasion of Privacy?”

Thermometers in Wine, the Edge of the Solar System and Redefining Junk DNA: Science News of the Week

Science keeps on producing new discoveries every week. It can be difficult to keep up with the latest news even when it is part of your job. There were a few science stories that caught my attention this week so I thought I would share them.

Galilean Thermometer Not So Galilean” was a surprising news item. I love my Galileo thermometer received as a Christmas gift several years ago. However, as Peter Loyson’s commentary in the Journal of Chemical Education points out, Galileo Galilei invented a thermometer but it was based on air. The one attributed to him was created by a Florentine group of academics and technicians founded by the Grand Duke Ferdinand II and his brother Leopoldo. And those first thermometers? Used wine to float the little glass balls.

Voyager 1, which just turned 35 on September 5, and Voyager 2 are pushing at the boundaries of our solar system as well as our understanding of space. In fact, NASA is saying that Voyager 1 was expected to pass through the heliopause, the edge that defines the end of the influence of our sun and the beginning of true interstellar space, but recent data indicated that this edge is further than we imagined. In fact, it could lie seven years beyond Voyager 1’s current position, and the battery in each Voyager estimated to deplete between 2020 and 2025. Still, these two small satellites have boldly gone beyond their initial mission to explore the far reaches of space and are still sending data back to our humble Earth.

Sequencing the human genome was an accomplishment but just this week, the scientists involved in the Encyclopedia of DNA Elements (ENCODE) project published 30 papers in Nature and other journals (summarized here). With the complete human sequence in hand, most scientists thought the items of interest in the genome were the genes, the coding regions. But as researchers started to dig into the data and use it for their experiments, it became evident understanding the genome was more complex than the sequence. The ENCODE project is a consortium of scientists that wanted to understand the entire genome and ended up finding that the 2% that encodes proteins is controlled by those sequences between genes nicknamed “junk DNA”. It is an incredible effort that has implications across aging and cancer, and ENCODE claims it can assign functions to 80% of the genome.