How To Make Medicine on Mars

Today NASA’s InSight lander will touch down on Mars. InSight, which launched on May 5, is NASA’s first Mars landing since the Curiosity rover in 2012. The lander will begin a two-year mission to study Mars’ deep interior, gathering data that will help scientists understand the formation of rocky planets, including Earth.

NASA's InSight lander approaching Mars.

Image credit: NASA/JPL-Caltech

While every spacecraft that reaches Mars offers more knowledge of the Red Planet, a lot of the excitement is fueled by hopes that someday these missions will bring humans to Mars and enable us to start colonies there. While this goal seems very distant, tremendous progress is being made. Scientists around the globe are making incremental discoveries that will lead to the advances necessary to make colonization of Mars a reality.

I had the pleasure of meeting one team of scientists doing just this—eight high school students from iGEM Team Navarra BG. I met the team and their advisors at the 2018 iGEM Giant Jamboree, where they presented their synthetic biology project, BioGalaxy, as part of the iGEM competition. The problem they aimed to solve is key to helping humans stay on Mars for an extended period of time—how do you take everything you need when there isn’t enough room on the spacecraft? Continue reading

Nano, Nano: Tiny Lipid Particles with Big Therapeutic Potential

cell-transfection-viafect-luciferase-assayGetting DNA or RNA into cells can be a tricky business, and a variety of transfection reagents have been developed over the years to make the process easier. Lipid-based reagents are especially popular because they combine efficient transfection with relatively low toxicity.

When it comes to transfection, it pays to think small. Human cells range in volume from 20–40 µm3 (sperm cells) to as large as 4 million µm3 (mature egg cells, or oocytes). For several decades, transfection reagents have targeted this size range. However, breakthrough research involves leaving the “micro” realm and entering a world that was once the domain only of science fiction: nanotechnology. Continue reading

ViaFect™ Reagent for Transfection of iPSC-derived Cell Lines

Madison, WI is home for Promega, and while it is not a huge city, Madison is home to many biotech companies, fed mostly by the local, world-class University of Wisconsin-Madison. Many scientists and scientist families work, live and play near one another here. It is not uncommon for two scientists from different companies to talk to one another and discover that their respective companies have products or processes that could benefit both companies.

Case in point: Scientists at Promega have a good working relationship with Cellular Dynamics International (CDI), a biotech firm that specializes in differentiated iPSC-derived cells. We want to demonstrate that our assays work in iPSC cells and CDI wants to demonstrate the range of assays that can be performed with their iPSC-derived cells.

Differentiated iPSC cells are as close to primary cells as you can get, and primary cells are notoriously difficult to transfect due to their slow rate of growth and increased propensity for death. CDI reported great success with ViaFect™ Reagent and generously shared their data with us (see image). Continue reading