Lighting Up GPCR Research with Bioluminescent Tagging

G Protein-Coupled Receptors (GPCRs) are a very large, diverse family of transmembrane receptors in eukaryotes. These receptors detect molecules outside the cell and activate internal signaling pathways by coupling with G proteins. Once a GPCR is activated, β-arrestins translocate to the cell membrane and bind to the occupied receptor, uncoupling it from G proteins and promoting its internalization.

Reporter tags are useful for studying the dynamics of GPCRs and associated proteins, but large tags can disrupt the receptors’ native functioning, and often overexpression of the tagged protein is required to obtain sufficient signal. Here is one example of how researchers have used the small, bright NanoLuc® luciferase to overcome these common challenges and answer questions about GPCRs. Continue reading “Lighting Up GPCR Research with Bioluminescent Tagging”

When Proteins Get Together: Shedding (Blue) Light on Cellular LOV

NanoBRETNo protein is an island. Within a cell, protein-protein interactions (PPIs) are involved in highly regulated and specific pathways that control gene expression and cell signaling. The disruption of PPIs can lead to a variety of disease states, including cancer.

Two general approaches are commonly used to study PPIs. Real-time assays measure PPI activity in live cells using fluorescent or luminescent tags. A second approach includes methods that measure a specific PPI “after the fact”; popular examples include a reporter system, such as the classic yeast two-hybrid system.

Continue reading “When Proteins Get Together: Shedding (Blue) Light on Cellular LOV”

A BiT or BRET, Which is Better?

Now that Promega is expanding its offerings of options for examining live-cell protein interactions or quantitation at endogenous protein expression levels, we in Technical Services are getting the question about which option is better. The answer is, as with many assays… it depends! First let’s talk about what are the NanoBiT and NanoBRET technologies, and then we will provide some similarities and differences to help you choose the assay that best suits your individual needs. Continue reading “A BiT or BRET, Which is Better?”

All You Need is a Tether: Improving Repair Efficiency for CRISPR-Cas9 Gene Editing

Ribonucleoprotein complex with Cas9, guide RNA and donor ssDNA. Copyright Promega Corporation.
With the advent of genome editing using CRISPR-Cas9, researchers have been excited by the possibilities of precisely placed edits in cellular DNA. Any double-stranded break in DNA like that induced by CRISPR-Cas9 is repaired by one of two pathways: Non-homologous end joining (NHEJ) or homology-directed repair (HDR). Using the NHEJ pathway results in short insertions or deletions (indels) at the break site, so the HDR pathway is preferred. However, the low efficiency of HDR recombination to insert exogenous sequences into the genome hampers its use. There have been many attempts at boosting HDR frequency, but the methods compromise cell growth and behave differently when used with various cell types and gene targets. The strategy employed by the authors of an article in Communications Biology tethered the DNA donor template to Cas9 complexed with the ribonucleoprotein and guide RNA, increasing the local concentration of the donor template at the break site and enhancing homology-directed repair. Continue reading “All You Need is a Tether: Improving Repair Efficiency for CRISPR-Cas9 Gene Editing”

Biotechnology From the Mouths of Babes

As a science writer, much of my day entails reviewing and revising marketing materials and technical literature about complex life science research products. I take for granted the understanding that I, my colleagues and our customers have of how these technologies work. This fact really struck me as I read an article about research to improve provider-patient communication in healthcare settings.

The researchers completed an analysis revealing that patient information materials had an average readability at a high school level, while the average patient reads at a fourth-grade level. These findings inspired the researchers to conduct a study in which they enlisted the help of elementary students to revise the content of the patient literature after giving them a short lesson on the material.

The resulting content did not provide more effective ways to communicate indications, pre- and post-op care, risks or procedures—that wasn’t really the point. Instead, the study underscores the important connection between patient literacy and health outcomes. More specifically, a lack of health literacy is correlated with poor outcomes and increased healthcare costs, prompting action from the US Department of Health & Human Services.

While healthcare information can be complex and full of specific medical terminology, I recognized that a lot of the technical and marketing information we create for our products at Promega has similar features. Wouldn’t it be interesting to find out how descriptions of some of our biggest technologies translate through the eyes and mouths of children?

After enlisting some help from my colleagues, I was able to catch a glimpse of how our complex technologies are understood by the little people in our lives. The parents and I explained a technology and then had our child provide a description or drawing of what they understood. Continue reading “Biotechnology From the Mouths of Babes”

Shining Stars: Cool NanoLuc® Plasmid Constructs Available Through the Addgene Repository

Researchers having been sharing plasmids ever since there were plasmids to share. Back when I was in the lab, if you read a paper and saw an interesting construct you wished to use, you could either make it yourself or you could “clone by phone”.  One of my professors was excellent at phone cloning with labs around the world and had specific strategies and tactics for getting the plasmids he wanted. Addgene makes this so much easier to share your constructs from lab to lab. Promega supports the Addgene mission statement: Accelerate research and discovery by improving access to useful research materials and information.  Many of our technology platforms like HaloTag® Fusion Protein, codon-optimized Firefly luciferase genes (e.g., luc2), and NanoLuc® Luciferase are present in the repository. We encourage people to go to Addgene to get new innovative tools. Afterall, isn’t science better when we share?

I’d like to focus on some tools in the Addgene collection based on NanoLuc® Luciferase (NLuc).  The creation of NanoLuc® Luciferase and the optimal substrate furimazine is a good story (1).  From a deep sea shrimp to a compact powerhouse of bioluminescence, NLuc is 100-fold brighter than our more common luciferases like firefly (FLuc) and Renilla (RLuc) luciferase.  This is important not so much for how bright you can make a reaction but for how sensitive you can make a reaction.  NLuc requires 100-fold less protein to produce the same amount of light from a Fluc or RLuc reaction.  NLuc lets you work at physiological concentrations.  NLuc is bright enough to detect endogenous tagged genes generated through the CRISPR/Cas9 knock-in.  NLuc is very inviting for endogenous tagging as it is only 19kDa.  An example is the CRISPaint-NLuc construct (Plasmid #67178) for use in the system outlined in Schmid-Burgk, J.L. et al (2).

Two applications of NanoLuc® Technology have caught my attention through coupling the luciferase with fluorescent proteins to make better imaging reporters and biosensors. Continue reading “Shining Stars: Cool NanoLuc® Plasmid Constructs Available Through the Addgene Repository”

Probing RGS:Gα Protein Interactions with NanoBiT Assays

gpcr_in_membrane_on_white2When I was a post-doc at UT Southwestern, I was fortunate to interact with two Nobel prize winners, Johann Deisenhofer and Fred Gilman.  Johann once helped me move a -80°C freezer into his lab when we lost power in my building. I once replaced my boss at small faculty mixer with a guest speaker and had a drink with Fred Gilman and several other faculty members from around the university. Among the faculty, one professor had a cell phone on his belt, an odd sight in 1995. Fred Gilman asked him what it was and why he had it. It was so his lab could notify him of good results anytime of the day. Fred laughed and told him to get rid of it – if it’s good data, it will survive until morning.

I was reminded of this story when I read a recent paper by Bodle, C.R. et al (1) about the development of a NanoBiT® Complementation Assay (2) to measure interactions of Regulators of G Protein Signaling (RGS) with Gα proteins in cells. (Fred Gilman was the first to isolate a G protein and that led to him being a co-recipient of the Nobel Prize in 1994). The authors created over a dozen NanoBiT Gα:RGS domain pairs and found they could classify different RGS proteins by the speed of the interaction in a cellular context. The interactions were readily reversible with known inhibitors and were suitable for high-throughput screening due to Z’ factors exceeding 0.5. The study paves the way for future work to identify broad spectrum RGS domain:Gα inhibitors and even RGS domain-specific inhibitors. This is the second paper applying NanoBiT Technology to GPCR studies (3).

A Little Background…
A primary function of GPCRs is transmission of extracellular signals across the plasma membrane via coupling with intracellular heterotrimeric G proteins. Upon receptor stimulation, the Gα subunit dissociates from the βγ subunit, initiating the cascade of downstream second messenger pathways that alter transcription (4). The Gα subunits are actually slow GTPases that propagate signals when GTP is bound but shutdown and reassociate with the βγ subunit when GTP is cleaved to GDP. This activation process is known as the GTPase cycle. G proteins are extremely slow GTPases. Continue reading “Probing RGS:Gα Protein Interactions with NanoBiT Assays”

Optimizing Antibody Internalization Assays: pHAb Dyes

22255190_pHabAmine_3D_image_050615-final-largePromega has recently developed a method that allows antibodies to be screened for their internalization properties in a simple, plate-based format. The method uses pH sensor dyes (pHAb dyes), which are not fluorescent at neutral pH but become highly fluorescent at acidic pH. When an antibody conjugated with pHAb dye binds to its antigen on the cancer cell membrane, the antibody-dye-antigen complex is not fluorescent, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops, and the dye becomes fluorescent.

To demonstrate the broad utility of the pHAb dye for receptor mediated antibody internalization, two therapeutic antibodies, trastuzumab and cetuximab,which bind to HER2 and EGFR respectively, were selected for a case study (1). Both the antibodies, which are known to internalize were labeled with pHAb dyes using amine or thiol chemistry.

Parameters such as the impact of dye–to-antibody ratio on the antigen–antibody binding, change in fluorescence as a function of pH of free dye and labeled dye, and labeled antibody internalization as a function of pHAb conjugated antibody concentration were evaluated.

The results indicate that pHAb dyes are pH sensitive fluorescent dyes that enable the study of receptor-mediated antibody internalization.Internalization assays can be performed in a plate-based homogeneous format and allow endpoint assays as well as real-time monitoring of internalization. They further show that internalization can be monitored even at a very low amount of antibody which is very important during the early monoclonal antibody development phase when the amount of sample is limited and the antibody concentration in the samples is low. a complimentary approach, they  also showed that a secondary antibody labeled with pHAb dye can be used instead of labeling primary antibodies.

Literature cited

Nath, N. et al. (2016) Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye J.  Immunol. Methods epub ahead of print

Studying Mitochondrial Fission with NanoBiT Complementation Assay

Vote for NanoBiT™ in the Scientist's Choice Awards and get a chance to win a $500.00 US Amazon voucher from Select Science.
Vote for NanoBiT™ in the Scientist’s Choice Awards and get a chance to win a $500.00 US Amazon voucher from Select Science.

Motivation
It’s a new year. Whether you’re a self-improvement fanatic or just ready for good things to start happening, you’ve got a plan. You might be changing up an old exercise routine or trying a new cooking technique.

And at work, you are digging deeper; this is the year you illuminate the protein interactions that you’ve previously not been able to visualize.

Good news. There is a new protein complementation assay that can help. Studying-mitochondrial-fission-poster

About NanoBiT
NanoBiT™ Complementation Reporter is a recently developed protein interaction assay that features the improved NanoLuc® luciferase. NanoLuc, originally isolated from a deep sea shrimp, is a small luciferase that provides a much brighter signal than firefly luciferase.

About Split Luciferase Systems
If you’re interrogating two proteins to understand the conditions under which they interact, a split luciferase system enables you to tag each protein with a luciferase subunit. Interaction of the tagged proteins facilitates the complementation of the subunits, resulting in a luminescent signal. Continue reading “Studying Mitochondrial Fission with NanoBiT Complementation Assay”

Key Advances in PPI Research

small linkedin thumbnailOur understanding of the microscopic world has been shaped by the tools available to monitor and visualize cellular interactions. We “stand on the shoulders of giants” to propel our research to even greater heights. Studying protein-protein interactions (PPI) has proved fruitful for our understanding of cellular metabolism, signal transduction, and more. Scientists are starting to build whole organism interactomes (kindred to the metabolome and genome) that could have huge implications towards understanding and treating disease. Let us take a trip down memory lane to see where we have come from.  Continue reading “Key Advances in PPI Research”