A Better Way to Understand How and Why Cells Die

Real-time, up-to-the-minute access to information provides new opportunities for scientists to monitor cellular events in ever more meaningful ways. Real-time cytotoxicity and cell viability assay reagents now allow constant monitoring of cell health status without the need to lyse or remove aliquots from plates for measurement. With a real-time approach, data can be collected from cell cultures or microtissues at multiple time points after addition of a drug compound or other event, and the response to treatment continually observed.

The CellTox™ Green assay is a real-time assay that monitors cytotoxicity using a fluorescent DNA binding dye, which binds DNA released from cells upon loss of membrane integrity. The dye cannot enter intact, live cells and so fluorescence only occurs upon cell death, correlating with cytotoxicity. Here’s a quick overview showing how the assay works:

More Data Using Fewer Samples and Reagents
The ability to continually monitor cytotoxicity in this way makes it easy to conduct more than one type of analysis on a single sample. Assays can be combined to determine not only the timing of cytotoxicity, but to also understand related events happening in the same cell population. As long as the readouts can be distinguished from one another multiple assays can be performed in the same well, providing more informative data while using less cells, plates and reagents.

Combining assays in this way can reveal critical information regarding mechanism of cell death. For example, assay combinations can be used to determine whether cells are dying from apoptosis or necrosis, or to distinguish nonproliferation from cell death. Combining CellTox Green with an endpoint luminescent caspase assay or a real-time apoptosis assay allows you to determine whether observed cytotoxic effects are due to apoptosis. Cytotoxic and anti-proliferative effects can be distinguished by combining the cytotoxicity assay with a luminescent or fluorescent cell viability assay. Continue reading

A Cell Viability Assay for Today

Valued for ease of use and scalability, plate-based, bioluminescent cell viability assays are widely used to support research in biologics, oncology and drug discovery.

Cell viability assays are a bread-and-butter method for many researchers using cultured cells —everyday lab tools that are a part of many newsworthy papers, but rarely make news themselves.

Over time, cell viability assays have become easier to use and more “plug ‘n play”. Among modern assays, luminescent plate-reader based systems have been a favorite for several years because of their superior sensitivity, robustness, simple protocols and uncomplicated equipment requirements (all you need is a plate-reading luminometer). These qualities combine to allow easy scalability and adaptability from bench research to high throughput applications.

CellTiter-Glo® Luminescent Cell Viability Assay is an accepted go-to viability assay for many researchers. The assay measures ATP as an indicator of metabolically active cells. A quick search on Google Scholar returns 3,990 CellTiter-Glo results for 2017 and over 500 so far in January and February of 2018. A sampling of these recent publications gives a snapshot of some of the ways the CellTiter-Glo assay is used to support key areas of research today.

Does a treatment kill cells?

The obvious application of a cell viability assay is to understand whether cells are alive. In cancer research, the CellTiter-Glo assay is often used to confirm killing of tumor cells and to verify that normal cells survive. Therefore, these assays are a key part of the evaluation and screening of drug candidates and other therapies for cancer. Many papers reporting use of CellTiter-Glo are developing and evaluating the effectiveness of novel anti-cancer treatments. Continue reading

Evaluating the Costs of Endotoxin Testing

http://www.eniscuola.net/en/mediateca/king-crab/

Recently, I had the opportunity to attend a fascinating symposium held at Promega featuring conservationist Steward Brand, where he described some of the projects developed by his foundation, Revive & Restore.

The organization’s mission is to apply emerging biotechnology techniques to endangered and extinct species with the intent to increase genetic diversity, provide disease resistance and facilitate adaptation to changing climates. Although the overall message of enhancing biodiversity through the application of new genetic technology was inspiring, the project that resonated most for me was related to the plight of horseshoe crabs.

Horseshoe crabs, often referred to as living fossils, include four extant species with origins dating back about 450 million years. Although they look like crabs, they belong to their own subphylum and are more closely related to spiders. When horseshoe crabs spawn, they leave their usual habitat on the ocean floor and migrate to shore in large numbers. As a result, they have been exploited for bait and fertilizer for decades.

Enter endotoxins, an indicator for bacterial contamination in biologicals, drugs and medical devices. U.S. Food & Drug Administration regulations dictate that finished products be tested for the presence of endotoxins. These pyrogenic compounds, found in the cell wall of Gram-negative bacteria, can cause fever and affect a wide range of biological activity, possibly leading to aseptic shock and death. The most common method for testing is the gel clot and Limulus Amebocyte Lysate (LAL) Test.

I first learned about the LAL test during graduate school, where it was presented as a ubiquitous and standard requirement for testing bacterial contamination in injectable drugs. I remember being fascinated that horseshoe crabs (Limulus sp.), contain a substance that could be used to detect endotoxins. Although the instructors mentioned the need to collect blood from horseshoe crabs in order to produce the test, the method or scale of this harvest wasn’t discussed, nor were the true costs of using this method of endotoxin testing.

The LAL test has served as a faster, more inexpensive replacement for the rabbit pyrogens test for the past 35 years. Every year during mating season horseshoe crabs move to shallow water, where they are removed in huge numbers. (To get an idea of scale for the harvest and read a much more comprehensive investigation of the issue, check out this article in The Atlantic, which features an archive photo of Delaware Bay horseshoe crab harvest from 1928—for fertilizer, not pharmaceutical testing.)

After collection, the crabs end up in a lab where up to 30% of their blood is drained from a needle stuck in tissue around their heart. The LAL is extracted from the blood and can yield a product worth up to $15,000/quart. In order to avoid recollection, the crabs are returned to the ocean far from the shore where they were collected a few days before. Although it’s estimated that only 10-30% of these crabs die as a result of the process, there are indications that the horseshoe crab population and their ecosystems are impacted in other ways.

Researchers at the University of New Hampshire and Plymouth State University used accelerometers attached to recently bled female horseshoe crabs to test the hypothesis that harvesting for LAL was affecting their ability to spawn. While the research supported previous estimates with a death rate of 18%, females were found to be less likely to mate after being bled.

During his talk, Brand shared results from a study still in review that confirm the effect of over-harvesting Limulus on the survival of long distance migratory shorebirds. These birds synchronize their migration with horseshoe crab spawning, which provides a needed feast of eggs before the homestretch of their journey. Along with other ecosystem threats from climate change, the accelerated decline in the horseshoe crab population and dependency of migratory birds will likely to lead to a devastating ecological domino effect.

Fortunately, a synthetic alternative to LAL, recombinant factor C (rFC), has been available for nearly 20 years. Alas, there has been no significant shift by pharmaceutical companies away from the test based on horseshoe crab blood. rFC was patented and licensed to one company, Lonza, which Brand posited as one reason for the reluctance of drug companies to adopt its use.

Obviously, relying on one source for an essential testing reagent with no competition to temper cost is quite unattractive. But that argument has less bearing now that the patent is scheduled to expire in a few months, opening the door for additional manufacturers and creating an economic incentive for switching to the synthetic test.

Another reason may be that implementing a new test would require additional resources to validate the synthetic test for products that are already being tested with the LAL. Since the LAL has been specified in FDA guidance documents on endotoxin testing for decades, quality standards for existing products are based on the LAL, limiting momentum to change.

If both tests offered the same benefits, these arguments would make sense; however, research by one of the discoverers of rFC, Jeak Ling Ding of the National University of Singapore, shows that in many respects rFC is more efficacious than LAL. Since the raw material for the LAL test depends on an organism, there is seasonal variation in the components of the processed blood that must be taken into account. The reaction of the LAL also depends on a cascade of multiple compounds that can be affected by temperature, pH and proteins—leaving the test vulnerable to false positive results.

Although Eli Lilly is the only pharmaceutical company to date to use rFC in place of LAL, It seems the tide may be turning. According to Brand, others are interested in making the transition. It seems foolish not to, given the source for LAL shows signs of dwindling due to overexploitation. Perhaps pharmaceutical companies are beginning to see the value of a “slower/better” philosophy (the cornerstone of the Long Now Foundation, another brainchild of Brand’s), rather than “faster/cheaper.” I have certainly gained a new perspective on endotoxin testing and a deep appreciation for the work of Brand and his foundation.

Does your organization use the LAL test? What is preventing you from switching to the synthetic alternative? Let us know!

Deubiquitinases: A Backdoor into Undruggable Targets?

Molecular model of the yeast proteasome.

Molecular model of the yeast proteasome.

Ubiquitin modification of a protein directs events such as targeting for proteasomal degradation. Targeting a protein for degradation through ubiquitin modification is one way to regulate the amount of time a signaling protein, such as a kinase or other enzyme, is available to participate in cell signaling events. Deubiquitinases (DUBs) are enzymes that cleave the ubiquitin tags from proteins, and they have been implicated in several diseases, including cancer.

With their roles in the stabilization of proteins involved in cell cycle progression and other critical processes, DUBs are promising targets for small molecule inhibitors, particularly since they may provide a “back door” for targeting otherwise intractable, undruggable proteins by modulating their half lives. However, finding small molecule inhibitors of the ubiquitin proteases to date has not been trivial. Here we highlight two papers describing the identification and characterization of small molecule inhibitors against the DUB USP7. Continue reading

Activating the Inflammasome: A New Tool Brings New Understanding

Innate immunity, the first line of immune defense, uses a system of host pattern recognition receptors (PRRs) to recognize signals of “danger” including invariant pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These signals in turn recruit and assemble protein complexes called inflammasomes, resulting in the activation of caspase-1, the processing and release of the pro-inflammatory cytokines IL-1ß and IL-18, and the induction of programmed, lytic cell death known as pyroptosis.

Innate immunity and the activity of the inflammasome are critical for successful immunity against a myriad of environmental pathogens. However dysregulation of inflammasome activity is associated with many inflammatory diseases including type 2 diabetes, obesity-induced asthma, and insulin resistance. Recently, aberrant NLRP3 inflammasome activity also has been associated with age-related macular degeneration and Alzheimer disease. Understanding the players and regulators involved in inflammasome activity and regulation may provide additional therapeutic targets for these diseases.

Currently inflammasome activation is monitored using antibody-based techniques such as Western blotting or ELISA’s to detect processed caspase-1 or processed IL-1ß. These techniques are tedious and are only indirect measures of caspase activity. Further, gaining information about kinetics—relating inflammasome assembly, caspase-1 activation and pyroptosis in time—is very difficult using these methods. O’Brien et al. describe a one-step, high-throughput method that enables the direct measurement of caspase-1 activity. The assay can be multiplexed with a fluorescent viability assay, providing information about the timing of cell death and caspase-1 activity from the same sample. Continue reading

Reveal More Biology: How Real-Time Kinetic Cell Health Assays Prove Their Worth

What if you could uncover a small but significant cellular response as your population of cells move toward apoptosis or necrosis? What if you could view the full picture of cellular changes rather than a single snapshot at one point? You can! There are real-time assays that can look at the kinetics of changes in cell viability, apoptosis, necrosis and cytotoxicity—all in a plate-based format. Seeking more information? Multiplex a real-time assay with endpoint analysis. From molecular profiling to complementary assays (e.g., an endpoint cell viability assay paired with a real-time apoptosis assay), you can discover more information hidden in the same cells during the same experiment.

Whether your research involves screening a panel of compounds or perturbing a regulatory pathway, a more complete picture of cellular changes gives you the benefit of more data points for better decision making. Rather than assessing the results of your experiment using a single time point, such as 48 hours, you could monitor cellular changes at regular intervals. For instance, a nonlytic live-cell reagent can be added to cultured cells and measurements taken repeatedly over time. Pairing a real-time cell health reagent with a detection instrument that can maintain the cells at the correct temperature means you can automate the measurements. These repeated measurements over time reveal the kinetic changes in the cells you are testing, giving a real-time status update of the cellular changes from the beginning to the end of your experiment. Continue reading

Cytotoxicity Testing of 9,667 Tox21 Compounds using Two Real-Time Assays by Promega

A recent paper in PLOS One demonstrated real-time cytotoxicity profiling of approximately 10,000 chemical compounds in the Tox21 compound library, using two Promega assays, RealTime-Glo™ MT Cell Viability Assay and CellTox™ Green Cytotoxicity Assay. This is exciting to me, a science writer working at Promega; exciting because it’s tricky figuring out how to write about the utility of our products without sounding like an evangelist.

I don’t know about you, but I tend to shut out evangelists and their messages.

Instead of me telling you about real-time viability and cytotoxicity assays from Promega, here is an example of their use in Tox21 chemical compound library research.

What is the Tox21 compound library?
As described in the article by Hsieh, J-H. et al. (2017) in PLOS One:
“The Toxicology in the 21st Century (Tox21) program is a federal collaboration among the National Institutes of Health, including the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences and the National Center for Advancing Translational Sciences, the Environmental Protection Agency, and the Food and Drug Administration. Tox21 researchers utilize a screening method called high throughput screening (HTS) that uses automated methods to quickly and efficiently test chemicals for activity across a battery of assays that target cellular processes. These assays are useful for rapidly evaluating large numbers of chemicals to provide insight on potential human health effects.” Continue reading

Real-Time Analysis for Cell Viability, Cytotoxicity and Apoptosis: What Would You Do with More Data from One Sample?

You are studying the effects of a compound(s) on your cells. You want to know how the compound affects cell health over a period of hours, or even days. Real-time assays allow you to monitor cell viability, cytotoxicity and apoptosis continuously, to detect changes over time.

Why use a real-time assay?
A real-time assay enables you to repeatedly measure specific events or conditions over time from the same sample or plate well. Repeated measurement is possible because the cells are not harmed by real-time assay reagents. Real-time assays allow you to collect data without lysing the cells.

Advantages of  Real-Time Measurement
Real-time assays allow you to: Continue reading

In Healthy Eating Less is More: The Science Behind Intermittent Fasting

Mix a love of eating with a desire to live a long, healthy life what do you get? Probably the average 21st century person looking for a way to continue enjoying food despite insufficient exercise and/or an age-related decline in caloric needs.

Enter intermittent fasting, a topic that has found it’s way into most news sources, from National Institutes of Health (NIH) and Proceedings of the National Academy of Sciences publications to WebMD and even the popular press. For instance, National Public Radio’s “The Salt” writers have tried and written about their experiences with dietary restriction.

While fasting has enjoyed fad-like popularity the past several years, it is not new. Fasting, whether purposely not eating or eating a restricted diet, has been practiced for 1,000s of years. What is new is research studies from which we are learning the physiologic effects of fasting and other forms of decreased nutrient intake.

You may have heard the claims that fasting makes people smarter, more focused and thinner? Researchers today are using cell and animal models, and even human subjects, to measure biochemical responses at the cellular level to restricted nutrient intake and meal timing, in part to prove/disprove such claims (1,2). Continue reading

Making BRET the Bright Choice for In vivo Imaging: Use of NanoLuc® Luciferase with Fluorescent Protein Acceptors

13305818-cr-da-nanoluc-application_ligundLive animal in vivo imaging is a common and useful tool for research, but current tools could be better. Two recent papers discuss adaptations of BRET technology combining the brightness of fluorescence with the low background of a bioluminescence reaction to create enhanced in vivo imaging capabilities.

The key is to image photons at wavelengths above 600nm, as lower wavelengths are absorbed by heme-containing proteins (Chu, J., et al., 2016 ). Fluorescent protein use in vivo is limited because the proteins must be excited by an external light source, which generates autofluorescence and has limited penetration due to absorption by tissues. Bioluminescence imaging continues to be a solution, especially firefly luciferase (612nm emission at 37°C), but its use typically requires long image acquisition times. Other luciferases, like NanoLuc, Renilla, and Gaussia, etc. either do not produce enough light or the wavelengths are readily absorbed by tissues, limiting their use to near- surface imaging.

The two papers discussed here illustrate how researchers have combined NanoLuc® luciferase with a fluorescent protein to harness bioluminescent resonance energy transfer (BRET) for brighter in vivo imaging reporters. Continue reading