A Cell Viability Assay for Today

Valued for ease of use and scalability, plate-based, bioluminescent cell viability assays are widely used to support research in biologics, oncology and drug discovery.

Cell viability assays are a bread-and-butter method for many researchers using cultured cells —everyday lab tools that are a part of many newsworthy papers, but rarely make news themselves.

Over time, cell viability assays have become easier to use and more “plug ‘n play”. Among modern assays, luminescent plate-reader based systems have been a favorite for several years because of their superior sensitivity, robustness, simple protocols and uncomplicated equipment requirements (all you need is a plate-reading luminometer). These qualities combine to allow easy scalability and adaptability from bench research to high throughput applications.

CellTiter-Glo® Luminescent Cell Viability Assay is an accepted go-to viability assay for many researchers. The assay measures ATP as an indicator of metabolically active cells. A quick search on Google Scholar returns 3,990 CellTiter-Glo results for 2017 and over 500 so far in January and February of 2018. A sampling of these recent publications gives a snapshot of some of the ways the CellTiter-Glo assay is used to support key areas of research today.

Does a treatment kill cells?

The obvious application of a cell viability assay is to understand whether cells are alive. In cancer research, the CellTiter-Glo assay is often used to confirm killing of tumor cells and to verify that normal cells survive. Therefore, these assays are a key part of the evaluation and screening of drug candidates and other therapies for cancer. Many papers reporting use of CellTiter-Glo are developing and evaluating the effectiveness of novel anti-cancer treatments. Continue reading

Determination of Antibody Mechanism of Action Using IdeS

Monoclonal antibodies (mAbs) have been widely used to eliminate undesired cells via various mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and programmed cell death (PCD). Unlike the Fc-dependent mechanism of ADCC and CDC, certain antibody–antigen interactions can evoke direct PCD via apoptosis or oncosis. Previously, researchers have reported the specific killing of undifferentiated human embryonic stem cells (hESC) by mAb84 (IgM) via oncosis (1)

In a recent publication (2), a monoclonal antibody (mAb), TAG-A1 (A1), was generated to selectively kill residual undifferentiated human embryonic stem cells (hESC). One of the many experimental tools used to characterize the mechanism of oncosis was the fragmention of the A1 antibody with IdeS and papain.

Papain digestion of IgG produces Fab fragments in the presence of reducing agent. F(ab)2 fragments of A1 were produced using IdeS Protease.

The results indicate that both Fab_A1 and F(ab)2_A1 bind to hESC but only F(ab)2_A1 retained hESC killing. Hence bivalency, but not Fc-domain, is essential for A1 killing on hESC.

  1. Choo, A.B. et al. (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells  26, 1454.
  2. Zheng, J.Y. et al. (2017) Excess reactive oxygen species production mediates monoclonal antibody-induced human embryonic stem cell death via oncosis. Cell Death and Differentiation 24, 546–58.

Further reading about IdeS Protease is available here.

Analysis of a biosimilar mAb using Mass Spectrometry

Several pharmaceutical companies have biosimilar versions of therapeutic mAbs in development. Biosimilars can promise significant cost savings for patients, but the unavoidable differences
between the original and thencopycat biologic raise questions regarding product interchangeability. Both innovator mAbs and biosimilars are heterogeneous populations of variants characterized by differences in glycosylation,oxidation, deamidation, glycation, and aggregation state. Their heterogeneity could potentially affect target protein binding through the F´ab domain, receptor binding through the Fc domain, and protein aggregation.

As more biosimilar mAbs gain regulatory approval, having clear framework for a rapid characterization of innovator and biosimilar products to identify clinically relevant differences is important. A recent reference (1) applied a comprehensive mass spectrometry (MS)-based strategy using bottom-up, middle-down, and intact strategies. These data were then integrated with ion mobility mass spectrometry (IM-MS) and collision-induced unfolding (CIU) analyses, as well as data from select biophysical techniques and receptor binding assays to comprehensively evaluate biosimilarity between Remicade and Remsima.

The authors observed that the levels of oxidation, deamidation, and mutation of individual amino acids were remarkably similar. they found different levels of C-terminal truncation, soluble protein aggregates, and glycation that all likely have a limited clinical impact.  Importantly, they identified more than 25 glycoforms for each product and observed glycoform population differences.

Overall the use of mass spectrometry-based analysis provides rapid and robust analytical information vital for biosimilar development. They demonstrated the utility of our multiple-attribute monitoring workflow using the model mAbs Remicade and Remsima and have provided a template for analysis of future mAb biosimilars.

1. Pisupati, K. et. al. (2017) A Multidimensional Analytical Comparison of Remicade and the Biosimilar Remsima. Anal. Chem 89, 38–46.

Don’t Let These Three Common Issues Hurt Your Luminescent Assay Results

4621CAThere is a lot riding on your luminescent assay results. Each plate represents precious time, effort and resources. Did you know that there are three things about your detection instrument that can impact how much useful information you get from each plate?  Instruments with poor sensitivity may cause you to miss low-level samples that could be the “hit” you are looking for.  Instruments with a narrow detection range limit the accuracy or reproducibility you needed to repeat your work.  Finally, instruments that let the signal from bright wells spill into adjacent wells allow crosstalk to occur and skew experimental results, costing you time and leading to failed or repeated experiments. Continue reading

Widening the Proteolysis Bottleneck: A New Protein Sample Preparation Tool

The poster featured in this blog provides background information and data on development of Rapid Digestion-Trypsin.

The poster featured in this blog provides background information and data on development of Rapid Digestion-Trypsin.

Improvements in Protein Bioprocessing

As more and more protein-based therapeutics enter research pipelines, more efficient protocols are needed for characterization of protein structure and function, as well as means of quantitation. One main step in this pipeline, proteolysis of these proteins into peptides, presents a bottleneck and can require optimization of multiple steps including reduction, alkylation and digestion time.

We have developed a new trypsin reagent, Rapid Digestion–Trypsin, that streamlines the protein sample preparation process, reducing the time to achieve proteolysis to about 1 hour, a remarkable improvement over existing overnight sample preparation times.

How Does it Work?

With this new trypsin product, proteolysis is performed at 70°C, incorporating both denaturation and rapid digestion. The protocol can be used with multiple protein types, including pure proteins and complex mixtures, and is compatible with digestion under native, reduced or nonreduced conditions.

Continue reading

Gut Microbes and Hypertension: Demonstrating a Causal Link

Most of us are aware that the human body is covered by and full of microorganisms. And we understand that most of these microorganisms are helpful, both in terms of competition with and protection against invading microorganisms, and in the gut, as agents of digestion.

Bacillus subtilis, an example of Firmicutes, and not a good gut microbe. By Y tambe (original uploader) - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=49528

Bacillus subtilis, an example of Firmicutes, and not a good gut microbe. By Y tambe (original uploader) – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=49528

In the past decade, however, research has brought compelling details implicating gut microbes in obesity, cancer, insulin resistance and such central nervous system disorders as depression, austism spectrum disorder and multiple sclerosis (Adnan, S. et al.). Yet the mechanisms and details of these associations have not been fully demonstrated.

Gut bacteria have been proven to be connected to thickening of heart vasculature, known as atherosclerosis. Researchers have demonstrated that bacteria metabolize choline and L-carnitine from food to trimethylamine, which crosses the gut barrier into circulation and reaches the liver. In the liver, trimethylamine is metabolized to the atherogenic molecule triethylamine-N-oxide (Gregory, J.C. et al., Brown and Hazen). These studies are among the few that provide a direct connection between gut microbes and a pathological condition. Continue reading

The Wide World of Bioprocessing: Science for the Greater Good

My former research career was spent in academic laboratories, and I don’t have first-hand experience in the world of bioprocessing. However in my current job as a science writer/copy editor, I create product information and literature about products that are useful to bioprocessing engineers and technicians, and thus wanted to learn more about this diverse area, where discovery and processing of biomaterials results in better therapeutic drugs, better biofuels and even healthier foods.

Bioprocessing is a combination of biological science and chemistry, and a burgeoning science field. Burgeoning is an understatement. Exploding is a much more apt description.

This 2011 Science magazine careers article defines bioprocessing thusly:

“Bioprocessing is an expanding field encompassing any process that uses living cells or their components (e.g., bacteria, enzymes, or chloroplasts) to obtain desired products, such as biofuels and therapeutics.”

Continue reading

Improved Method for the Rapid Analysis of Monoclonal Antibodies Using IdeS

ides_abTherapeutic monoclonal antibodies (MAbs) are inherently heterogeneous due to a wide range of both enzymatic and chemical modifications, such as oxidation, deamidation and glycosylation which may occur during expression, purification or storage. For identification and functional evaluation of these modifications, stability studies
are typically performed by employing stress conditions such as exposure to chemical oxidizers, elevated pH and temperature.

To characterize MAbs, a variety of analytical techniques are chosen, such as size exclusion chromatography and ion exchange chromatography. However, due to the large size of the intact MAbs, these methods lack structural resolution. Often, the chromatographic peaks resolved by SEC and IEC methods are collected and further analyzed by peptide mapping to obtain more detailed information. Peptide mapping, in which antibodies are cleaved into small peptides through protease digestion followed by LC–MS/MS analysis, is generally the method of choice for detection and quantitation of site-specific modifications. However sample preparation and lengthy chromatographic separation make peptide mapping impractical for the analysis of large numbers of samples. In contrast to peptide mapping analysis, the middle-down approach offers the advantage of high-throughput and specificity for antibody characterization.

Limited proteolysis of IgG molecules by the IdeS enzyme has been introduced for antibody characterization due to its high cleavage specificity and simple digestion procedure. Continue reading

Optimizing Antibody Enrichment for Pharmacokinetic Assays

Schematic showing immuno-enrichment using High Capacity Magne® Streptavidin Beads.

Schematic showing immuno-enrichment using High Capacity Magne® Streptavidin Beads.

During preclinical research and development of therapeutic antibodies, multiple variants of each antibody are assessed for pharmacokinetic (PK) characteristics across model systems such as rodents, beagles and primates. Ligand-binding assays (LBA) or liquid chromatography coupled to tandem mass spectrometry(LC–MS/MS)-based methods represent the two most common technologies used to perform the PK studies for mAb candidates(1,2).

Using either method it is essential to ensure accurate quantitative results that the initial enrichment of the target therapeutic antibody from serum or plasma be optimal. Biotinylated antibodies or antigens (against the therapeutic targets) immobilized onto high capacity streptavidin beads will enrich therapeutic antibody from serum or plasma samples. (Figure13666MC.eps). The affinity of biotin for streptavidin (Kd = 10–15) is one of the strongest and most stable interactions in biology therefore the biotin-streptavidin interaction cannot be reversed under non-denaturing conditions. Hence, it is possible to perform extensive washing to remove nonspecifically bound protein and elute therapeutic antibodies without also eluting the biotinylated component, thus improving the detection limit.

Magnetic based separation techniques have several advantages in comparison with standard separation procedures. This process is usually very simple, with only a few handling steps. All the steps of the purification procedure can take place in one single test tube. The magnetic separation techniques are also the basis of various automated procedures. Learn more about  the High Capacity Magne™ Streptavidin Beads (Cat # V7820) .

References

Shooting for the Moon: Better Assays to Hit Our Cancer Research Targets

3239CA02_1AIn his address to the clinicians, researchers, and patients at the American Association for Cancer Research meeting in April, US Vice President Joe Biden, revealed that the goal of the #cancermoonshot initiative is to accomplish 10 years of cancer research in just five years, effectively doubling the pace of cancer research (1).

Treatments developed from cancer research have come a long way with dramatic differences in the experiences and prognoses for patients, just looking back over the last 25 years. How can we double the pace of cancer research? The #cancermoonshot will one, encourage data sharing among researchers, particularly data from clinical trials. Second, it seeks to increase collaboration across industry, academic and government scientists—each community being positioned to make unique contributions to the field. And third, the initiative looks to change the current grants award process that encourages scientists to keep data and results “quiet” until they can be published or protected legally as intellectual property.

Immunotherapy is an especially hot field in cancer research (2) that relies on the immune system to better fight cancer. Continue reading