Copper Containing Surfaces and Their Potential for Reducing the Spread of Infection and Antibiotic Resistant Gene Transfer

As a scientist and a jewelry artist, there are not that many occasions when my two passions overlap. As a geneticist, I find the evolution and spread of antibiotic resistant microbes to be fascinating in a “this is really cool and utterly terrifying” sort of way. As a jewelry artist, I love experimenting with new and different metals. Some of my current favorites are stainless steel, copper and bronze, which is an alloy of copper and tin. So you might be able to imagine my excitement when I came across an article in mBio discussing the public health implications of horizontal gene transfer (HGT) of antibiotic resistance genes on clinical and public touch surfaces made from copper alloys compared to those made of stainless steel (1).

Stainless steel: The unexpected, gene-transferring truth

Polishing stainless steelStainless steel is often used in clinical and public settings as work surfaces as well as other surfaces that are touched and cleaned often. Stainless steel is used in these applications for many of the same reasons I like it for jewelry: it is strong, resilient, relatively inexpensive, stain- and corrosion-resistant and will weather regular cleaning/exposure to moisture well. There is something about a gleaming stainless steel work surface that looks, well, sterile. But is it? Continue reading “Copper Containing Surfaces and Their Potential for Reducing the Spread of Infection and Antibiotic Resistant Gene Transfer”