The Human Cell Atlas: Mapping a Cellular Landscape

From macrophages that seek out and destroy infectious agents to fibroblasts that hold tissues and organs together, cells give form and function to our bodies. However, despite their foundational roles in our biology, there is still much we don’t know about cells—like where different cell types are localized, what states a given cell type may take on, how the molecular characteristics of cells change over a person’s lifetime and more. Addressing these questions will provide a deeper understanding about the cellular and genetic basis of human health and disease.

Image contains several cells with a hazy outline of a DNA molecule in the background and one cell is highlighted
Continue reading “The Human Cell Atlas: Mapping a Cellular Landscape”

What You Should Know About The Delta Variant

The Delta Variant poses a unique challenge to global health. We’ve compiled answers to some of the most common questions about Delta and other SARS-CoV-2 variants.

What is a variant?

A variant is a form of a virus that is genetically distinct from the original form.

“All organisms have mutation rates,” says Luis A Haddock, a graduate student at University of Wisconsin – Madison. “Unfortunately for us, viruses have one of the highest mutation rates of everything that currently exists. And even more unfortunately, RNA viruses have the highest mutation rates even among viruses.”

Luis works in the Friedrich Lab at UW-Madison, which has been sequencing SARS-CoV-2 genomes from positive test samples since the beginning of the pandemic. SARS-CoV-2 is constantly evolving, and sequencing can help us follow it through time and space. Most of the variants don’t behave any differently. A single nucleotide substitution might not even change the amino acid sequence of an encoded protein. However, occasionally a mutation will alter the structure or function of a protein.

Learn more about SARS-CoV-2 sequencing in the article “From Primate Models to SARS-CoV-2 Sequencing and Testing,” featuring David and Shelby O’Connor, two collaborators of the Friedrich Lab.

What is a Variant of Concern?

Continue reading “What You Should Know About The Delta Variant”

What Is A Viral Variant?

Every time a genome is replicated, there’s a chance that an error will be introduced. This is true for all life forms. On a small scale, these mutations can lead to genetic diseases or cancers. On a much larger scale, random mutations are an important tool of evolution.

During the COVID-19 pandemic, the SARS-CoV-2 virus has picked up many mutations as it spread around the world. Most of these mutations have been inconsequential – the virus didn’t change in any significant way. Others have given rise to variants such as B.1.1.7 and B.1.351, which present complications for public health efforts. By studying the evolution of the virus, we can monitor how it’s spreading and predict the characteristics of variants as they are detected.

SARS-CoV-2 variant
David Goodsell Painting of SARS-CoV-2 Virus
Continue reading “What Is A Viral Variant?”

From Primate Models to SARS-CoV-2 Sequencing and Testing

As the SARS-CoV-2 virus spread around the world in early 2020, many researchers shifted their focus to support the global endeavors to address the challenge. For two professors at the University of Wisconsin, their efforts started with animal models to study pathogenicity and grew into massive SARS-CoV-2 sequencing and COVID-19 testing projects.

Virologists David and Shelby O'Connor (shown running along Lake Mendota) have worked extensively in SARS-CoV-2 Sequencing and COVID-19 Testing

“Being a scientist in this field gives a sense of purpose, but also a sense of obligation and responsibility,” says David O’Connor, PhD. “You always want to feel like you’re living up to that.”

Continue reading “From Primate Models to SARS-CoV-2 Sequencing and Testing”

Using the Power of Technology for Viral Outbreaks

Artist’s rendition of a virus particle.

When the world is experiencing a viral pandemic, scientists and health officials quickly want data-driven answers to understand the situation and better formulate a public health response. Technology provides tools that researchers can use to develop a rapid sequencing protocol. With such a protocol, the data generated can help answer questions about disease epidemiology and understand the interaction between host and virus. Even better: If the protocol is freely available and based on cheap, mobile sequencing systems.

Continue reading “Using the Power of Technology for Viral Outbreaks”

Moving Towards Zero Hunger, One Genome at a Time

Farmer and a pile of cassava bulbs.

Have you ever thought about plant viruses? Unless you’re a farmer or avid gardener, probably not. And yet, for many people the battle against agricultural viruses never ends. Plant viruses cause billions of dollars in damage every year and leave millions of people food insecure (1–2), making viruses a major barrier to meeting the United Nations’ global sustainable development goal of Zero Hunger by 2030.

At the University of Western Australia, Senior Research Fellow Dr. Laura Boykin is using genomics and supercomputing to tackle the problem of viral plant diseases. In a recent study, Dr. Boykin and her colleagues used genome sequencing to inform disease management in cassava crops. For this work, they used the MinION, a miniature, portable sequencer made by Oxford Nanopore Technologies, to fully sequence the genomes of viruses infecting cassava plants.

Cassava (Manihot esculenta) is one of the 5 most important calorie sources worldwide (3). Over 800 million people rely on cassava for food and/or income (4). Cassava is susceptible to a group of viruses called begomoviruses, which are transmitted by whiteflies. Resistant cassava varieties are available. However, these resistant plants are usually only protected against a small number of begomoviruses, so proper deployment of these plants means farmers must know both whether their plants are infected and, if so, the strain of virus that’s causing the infection.

Continue reading “Moving Towards Zero Hunger, One Genome at a Time”

Christensenellaceae—A Natural Way to Stay Thin?

microbiome studies show how bacterial colonists influence healthA study published in the Nov 6 issue of Cell outlined results suggesting that an obscure family of bacteria colonizing the human gut may be inherited and may also have a direct influence on body weight. The paper is the first to identify such an association and to link a particular microbial colonist with lower BMI. Continue reading “Christensenellaceae—A Natural Way to Stay Thin?”

The Power of One: Revealing Microbial Dark Matter Using Single-Cell Sequencing

abstract digital backgroundMicroorganisms; they are the most abundant form of life. They are all around us, silent, unseen and undetected. The number of ‘species’ of archaea and bacteria climbs every year and is predicted to rise well past one million (1). Despite their abundance, we know very little about all but a small fraction of these diverse cellular life forms because we are unable to cultivate most in a laboratory setting. In fact, 88% of all our microbial isolates belong to just four bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacterioidetes; 2). The remaining branches of the microbial phylogenetic tree range from underrepresented to virtually unknown and are collectively referred to as “microbial dark matter”.

If you want to target those shadowy, ill-defined branches where exotic and underrepresented organisms belong, you go to environments that might harbor them. Towards this end, Christian Rinke and a large coalition of co-authors collected samples from a wide and varied choice of habitats including the South Atlantic tropical gyre, the Homestake Mine in South Dakota, the Great Boiling Spring in Nevada, the sediment at the bottom of the Etoliko Lagoon in Greece and even a bioreactor. Continue reading “The Power of One: Revealing Microbial Dark Matter Using Single-Cell Sequencing”

The Ongoing Legacy of the Human Genome Sequence

When the first draft sequence of the human genome was announced, I was a research assistant for a lab that was part of the Genome Center of Wisconsin where I created shotgun libraries of bacterial genomes for sequencing. Of course, the local news organizations were all abuzz with the news and sought opinions on what this meant for the future, including that of the lab’s PI and oddly enough, my own. While I do not recall the exact words I offered on camera, I believe they were something along the lines of this is only the first step toward the future of human genetics. Ten years later, we have not fulfilled the potential of the grandiose words used to report the first draft sequence but have gained enough knowledge of what our genome holds to only intrigue scientists even more.

Continue reading “The Ongoing Legacy of the Human Genome Sequence”