Animal or Plant? FISH Labeling Reveals Horizontal Transfer of Algae Gene into Sea Slug Chromosome

There are times when I ask myself why I chose a career in science. This happens on what I call “grass is greener” days. On these days I dream of other careers—like National Geographic reporter or Caribbean tour guide–which all sound way more exciting than scientist. Admittedly these alternative careers are not ones that many people have the privilege of attaining, but sometimes reality gets to take a vacation. Fortunately, science is a fast-moving, always-changing field. As much as I might occasionally dream of exotic jobs in far away locations, science always pulls me back in with something new and unexpected. Because as much as we’d like to think we know, the truth is there is so much more that we don’t.

Image from: Pelletreau KN, Weber APM, Weber KL, Rumpho ME (2014) Lipid Accumulation during the Establishment of Kleptoplasty in Elysia chlorotica. PLoS ONE 9(5): e97477. doi:10.1371/journal.pone.0097477
The sea slug Elysia chlorotica. Image from: Pelletreau K.N., et al. (2014)  PLoS ONE 9: e97477.

A case in point—sea slugs. These unfortunately named, exotic looking creatures have some surprising secrets. Continue reading “Animal or Plant? FISH Labeling Reveals Horizontal Transfer of Algae Gene into Sea Slug Chromosome”

Copper Containing Surfaces and Their Potential for Reducing the Spread of Infection and Antibiotic Resistant Gene Transfer

As a scientist and a jewelry artist, there are not that many occasions when my two passions overlap. As a geneticist, I find the evolution and spread of antibiotic resistant microbes to be fascinating in a “this is really cool and utterly terrifying” sort of way. As a jewelry artist, I love experimenting with new and different metals. Some of my current favorites are stainless steel, copper and bronze, which is an alloy of copper and tin. So you might be able to imagine my excitement when I came across an article in mBio discussing the public health implications of horizontal gene transfer (HGT) of antibiotic resistance genes on clinical and public touch surfaces made from copper alloys compared to those made of stainless steel (1).

Stainless steel: The unexpected, gene-transferring truth

Polishing stainless steelStainless steel is often used in clinical and public settings as work surfaces as well as other surfaces that are touched and cleaned often. Stainless steel is used in these applications for many of the same reasons I like it for jewelry: it is strong, resilient, relatively inexpensive, stain- and corrosion-resistant and will weather regular cleaning/exposure to moisture well. There is something about a gleaming stainless steel work surface that looks, well, sterile. But is it? Continue reading “Copper Containing Surfaces and Their Potential for Reducing the Spread of Infection and Antibiotic Resistant Gene Transfer”