Could This be the Next Generation Ebola Virus Vaccine?

Ebola virus has received a lot of press in the last year due to the extended epidemic outbreak in Africa. Ebola is part of the family of Filioviruses (filamentous virus) and causes hemorrhagic fever that leads to internal bleeding and loss of bodily fluids. As the epidemic in Africa has illustrated so starkly, once the virus infects a large enough population, the human suffering it causes is devastating to individuals and communities. Because no treatment other than palliative fluid support is available to those infected by Ebola virus, virologists have focused attention on potential therapeutics and vaccines. The vaccine strategies now in clinical trials are based on a single Ebola virus glycoprotein, GP, and involve a DNA-based vaccine or innoculation with an Ebola protein expressed from a viral vector. How effective and safe this approach may be for protection from Ebola virus infection is currently under investigation.

Based on the history of effective vaccines, Marzi et al. was interested in testing a whole-virus vaccine for Ebola (EBOV). A whole-virus-based vaccine like smallpox or measles uses an attenuated or inactivated virus. The advantage of this method is that all the proteins as well as the nucleic acid are available for immunological reaction, offering broader-based protection than a single protein. In the recently published Science report from Marzi et al., a replication-incompetent Ebola virus was used as the basis for a whole-virus vaccine that was tested for its efficacy in nonhuman primates.

Continue reading “Could This be the Next Generation Ebola Virus Vaccine?”

Promising Treatment for Marburg Virus Hemorrhagic Fever

I admit to some trepidation about the diseases that may be harbored in my backyard. For example, do the mice in my yard and, despite my and my cats’ efforts, in my house carry deer ticks that harbor the bacterium Borrelia burgdorferi, which causes Lyme disease? Should I be keeping an eye on the vitality of the birds around my property and density of my local mosquito population for potential risk of West Nile Virus transmission? As troublesome as these infections can be, mortality is low for infected humans. Contrast that with the mortality rate of up to 90% for the filoviruses Ebola and Marburg. I find it easy to dismiss these viruses because the reservoir (asymptomatic host) is not in the Upper Midwest but rather Africa, but the tragedy of the Ebola outbreak in the West African countries of Liberia, Sierra Leone and Guinea demonstrates the number of lives lost in an epidemic. Currently, there is no therapy or vaccine to treat these deadly viruses other than transferring antibodies from survivors to those infected. Therefore, the article in Science Translational Medicine about an antiviral treatment that protected macaques injected with a lethal dose of Marburg virus was welcome news.

Continue reading “Promising Treatment for Marburg Virus Hemorrhagic Fever”