An Epizootic for the Ages: Revisiting the White-Nose Syndrome Story

Map showing the spread of WNS across North America
Map showing the spread of WNS across North America

In March 2016, two hikers on a trail east of Seattle, WA, found a little brown bat lying on the ground in obviously poor condition. The bat was taken to an animal shelter where it died two days later from White-Nose Syndrome (WNS).

This bat was the first case of WNS found west of the Rocky Mountains. It represented a jump in the spread of WNS, and a troubling one. WNS was first detected in a cave in Albany, New York, and since then it has been moving slowly westward at a rate of about 200 miles per year, according to David Blehert of the United States Geological Survey, the laboratory that confirmed the WNS diagnosis for the Washington bat. Before this year’s discovery outside of Seattle, the westward-most case detected was in eastern Nebraska.

WNS, caused by a cold-loving fungus, Psuedogymnoascus destructans (Pd), can kill 100% of the hibernating bats in a colony, and in the ten years since it has been detected and monitored has killed over 6 million bats in the United States and Canada. As of July 2016, bats infected with the fungus have been found in 29 states and 5 Canadian provinces.

According to Blehert, this is probably the “most significant epizootic of wildlife” ever observed; never before have we seen hibernating mammals specifically affected by a skin fungus. What does that mean? Are we looking at extinction for some bat species? What are the ecological consequences of rapidly losing so many individuals to disease so quickly? And, what, if anything, can be done to combat the disease and help bat populations recover? Continue reading “An Epizootic for the Ages: Revisiting the White-Nose Syndrome Story”

Novel Cell Surface Markers Identified that Differentiate White, Beige and Brown Adipocytes

2012 CDC-based data on U.S. obesity percentages by state.
2012 CDC-based data on U.S. obesity percentages by state.

Estimates of obesity in the U.S. range from 30% (Centers for Disease Control data) to 70% (persons selling online and television audience-focused weight-loss programs). We are a nation of fat or fat-obsessed persons, and rightfully so. CDC data shows that the cost of obesity, in 2008 dollars, was estimated at $147 billion. That amount of money would buy a lot of french fries or cheesecake or __ (name your poison).

We all help pay those high-dollar amounts in terms of rising healthcare costs, thus there is considerable interest in finding ways to not only avoid, but also to combat obesity.

In recent years researchers working to understand body fat biology have produced exciting information on differences in types of fat. For instance, we now understand that in addition to white adipose tissue, animals and humans also have brown and beige adipose tissue. White adipose tissue or WAT is commonly found in humans and mice subcutaneously and in visceral fat. Brown adipose tissue or BAT, and beige adipose, is less common, and in humans and mice, is found in deeper cervical, supraclavical and paraspinal areas.

Continue reading “Novel Cell Surface Markers Identified that Differentiate White, Beige and Brown Adipocytes”

The Fat You Wish You Had

A baby has brown fat. Hopefully you and I do as well.

Brown fat, white fat…isn’t all adipose tissue the same?

Previously thought of as the domain of infants and hibernating bears, brown adipose tissue has been identified in the adult human body as well.

Two papers that appeared in The New England Journal of Medicine in 2009 reported that adult humans have brown fat, found in small blobs. These blobs showed on PET/CT scans when the people scanned were in cool surroundings, with room temperatures at 61–66°F. Blobs of brown fat show up on PET scans because these scans identify areas in the body where cells are more actively using glucose (1–2).
Continue reading “The Fat You Wish You Had”