Optimizing Your Scientific Conference Experience

When I was in graduate school (a really long time ago), I remember going to my first big conference—American Society for Cell Biology—and being completely overwhelmed. I walked in with my Annual Conference Proceedings (back then it was all paper—no apps—and those books were thick, heavy and took up a ridiculous amount of space in your luggage). I had highlighted at least 100 posters that I was going to visit, along with one talk at every session that remotely applied to my work. And of course, I was not going to miss a single platform presentation. I was grimly determined to learn everything.

After a day-and-a-half, I was too tired to even troll the exhibition floor for freebies.

In my current job, I spend time monitoring hashtags for scientific conferences, and I occasionally notice a plaintive tweet from a conference attendee awash in a sea of posters and platform presentations—wondering where to start or where to stop.

So I asked our scientists at Promega what their tips are for getting the most out of a conference. Here are our Conference ProTips:

Continue reading

Promega Travel Award Blog: An Excursion to Croatia

Dubrovnik, the Pearl of the Adriatic

Dubrovnik, the Pearl of the Adriatic

We invite you to travel with Bettina Bazzini-Lapin, Scientific Client Specialist, who was awarded a Promega Travel Award for sales performance and used her award to travel to Croatia and Italy. In this blog, she describes her travels.

Croatia is an Eastern European country that sits on the Adriatic Sea directly across from Italy. It has more than one thousand islands, and a third of the country is covered by forest. It is known for its beautiful Dalmatian coast line. One of the main sites for travelers to visit is the coastal city of Dubrovnik, known as the Pearl of the Adriatic. This is where my adventure began. Continue reading

NanoBRET™ Target Engagement Intracellular Kinase Assay Nominated for Scientists’ Choice Award®

Joins Nominees for Best New Drug Discovery & Development Product 2017

SelectScience® nominates NanoBRET™ Target Engagement Kinases Assay as a Best New Drug Discovery & Development product for 2017.

We were honored recently to have NanoBRET™ Target Engagement Intracellular Kinase Assays nominated by SelectScience® as one of the Best New Drug Discovery & Development Products of 2017. This is a Scientists’ Choice Award®, an opportunity for scientists like you worldwide to vote for your favorite new drug discovery/development product.

We are super excited about both the nomination and the NanoBRET™ Target Engagement Intracellular Kinase Assay. Here is a little information about the assay.

Continue reading

Optimized Detection of EPO-Fc in Human Biological Fluids

Recombinant erythropoietin (rhEPO) is often used as “doping agent” by athletes in endurance sports to increase blood oxygen capacity. Some strategies improve the pharmacological properties of erythropoietin (EPO) through the genetic and chemical modification of the native EPO protein. The EPO-Fcs are fusion proteins composed of monomeric or dimeric recombinant EPO and the dimeric Fc region of human IgG molecules. The Fc region includes the hinge region and the CH2 and CH3 domains. Recombinant human EPOs (rhEPO) fused to the IgG Fc domain demonstrate a prolonged half-life and enhanced erythropoietic activity in vivo compared with native or rhEPO.

Drug-testing agencies will need to obtain primary structure information and develop a reliable analytical method for the determination of EPO-Fc abuse in sport. The possibility of EPO-Fc detection using nanohigh-performance liquid chromatography−tandem mass spectrometry (HPLC−MS/MS) was already demonstrated (1). However, the prototyping peptides derived from EPO and IgG are not selective enough because both free proteins are naturally presented in human serum. In a recent publication, researchers describe the effort to identify peptides covering unknown fusion breakpoints (later referred to as “spacer” peptides; 2). The identification of “spacer” peptides will allow the confirmation of the presence of exogenous EPO-Fc in human biological fluids.

A bottom-up approach and the intact molecular weight measurement of deglycosylated protein and its IdeS proteolytic fractions was used to determine the amino acid sequence of EPO-Fc. Using multiple proteases, peptides covering unknown fusion breakpoints (spacer peptides) were identified.

Results indicated that “spacer peptides” could be used in the determination of EPO-Fc fusion proteins in biological samples using common LC−tandem MS methods.

References

  1. Reichel, C. et al. (2012) Detection of EPO-Fc fusion protein in human blood: screening and confirmation protocols for sports drug testing.
    Drug Test. Anal. 4, 818−29.
  2. Mesonzhnik, N. et al. (2017) Characterization and Detection of Erythropoietin Fc Fusion Proteins Using Liquid Chromatography−Mass Spectrometry.
    J. of Proteome Res. 17, 689-97.

Two Epigenetic Targets Are More Effective Than One

Lysine-specific histone demethylase 1 (LSD1) via Wikimedia Commons

Epigenetics is a new and exciting territory to explore as we understand more about the role it plays in gene silencing and expression. Because epigenetic regulation of gene expression is caused by specific modification of histone proteins (e.g., methylation) that play a role in disease states like cancer, enzymes like histone deacetylases (HDACs) become viable drug targets. One drawback to inhibiting proteins that modify histones is even when selectively targeting HDACs, the effects can be far ranging with multiple HDAC-containing protein complexes found throughout the cell. These broad effects minimize the effectiveness of an inhibitor, caught between efficacy and toxicity. A recent article in Nature Communications explored how using a single compound to target two epigenetic enzymes was more effective than any individual inhibitor or combination of inhibitors. Continue reading

The Bacteria that are Good for Us

Chains of StreptococciSalmonella. Streptococcus. Shigella. The most well-known bacteria are those that cause disease. Our relationship with them is one of combat. With good reason, we look for ways to avoid encountering them and to eliminate them when we do meet.

But not all bacteria are bad for us. Of course we have known for years that we are colonized by harmless bacteria, but recently, studies on the human microbiome have revealed many surprising things about these bacterial tenants. Studies are showing that the teeming multitudes of organisms living in and on the human body are not just harmless bystanders, but complex, interrelated communities that can have profound effects on our health.

Three studies published last week in Science add more to the growing body of microbiome surprises, showing that certain gut bacteria are not only good for us, but may even be required for the effectiveness of some anti-cancer immunotherapies.

Continue reading

The Making of a Vaccine: Preparation for Flu Season

At the time that I’m writing this, I still haven’t succumbed to the “yuck” that’s been knocking out my co-workers one-by-one since November. Those of us who are still healthy were discussing how we fortify our immune systems in preparation for the flu season. All of the suggestions were pretty typical—orange juice, Vitamin C supplements, and of course, the the annual flu shot.

For all of the agencies responsible for the production of the seasonal influenza vaccine, preparation for flu season begins long before the rest of us are stocking up on Emergen-C. Continue reading

FutureQuest17: Dynamic Career Exploration for Middle School Students

Isabel Agasie speaks with middle school students at FutureQuest 17.

Isabel Agasie speaks with middle school students at FutureQuest 17.

The Dane County School Consortium and the Madison Metropolitan School District’s Career and Technical Education Division collaborated to offer FutureQuest17 on December 6th at the Alliant Energy Center.  Designed as a hands-on experience for Dane County middle school students to explore areas of potential interest within a 16 career cluster, over 70 companies provided information and activities for 5300+ attendees.

BTC Institute staff members (Isabel Agasie, Amy Prevost and Karin Borgh) and volunteer Promega production scientists (Molly Nyholm and Kay Rashka) created a lively table area that focused on bioluminescence. Our space included opportunities to see an illustration of the range of careers in a biotechnology company like Promega, practice with different sizes of pipettes, view glowing recombinant luciferase, watch a scrolling slide show illustrating bioluminescence both in nature and in the lab and consider why a scientist might be interested in bioluminescence as a research tool.

Most importantly, we were able to engage in many wonderful conversations, and for this we needed all five of us since the schedule for the day included 14 periods of 20 minutes each—our estimate is that we were able to speak with ~40–50 students during each of these cycles!

As Molly noted:

The questions students asked were fantastic!!  “What is the chemical composition of this luciferin solution?”  “How much money do you make?”  “Do all glowing creatures have the same luciferase enzyme or are they different?”  “Are there any bioluminescent fish in Wisconsin?”  “Do I have to go to school for as long as you did if I want to be a scientist?”  “What pH is this solution?”  “Does this have potassium or sodium iodide?”  “Can I do an internship?”  “Can I be on the culinary team at Promega?”  “Does my glow paint have luciferase in it?”  “Do you have to take luciferase and luciferin out of those creatures or is there a way to make it in the lab?”

Kay Rashka works with students at FutureQuest17.

Kay Rashka works with students at FutureQuest17.

And, Isabel added:

It was really great to connect with students and also with teachers. Lots of fun being surrounded by kids and fantastic adults. Some kids were surprised to learn that a biotechnology company hires people in other areas besides science. They asked about diversity and were very glad to hear that there are many different kinds of jobs in biotech companies.

Some of the other presenters in the STEM area of the event that we were in close proximity to included: the City of Madison Engineering Division (where students could construct marble runs that represented water flow), Saris (where students could ride bikes set up to display a training program), Laser Tag (try it out!), very active construction companies’ hammering stations and the MG&E’s electric car. In other words, the level of activity was high, and it was wonderful to contribute to this event—we’ll be back next year!

Deck the Halls…and Cubes…and Desks

Every year around the beginning of December, a magical transformation begins in Promega offices in Madison and around the world. In Madison, even as our own Promega cookie elf is busily baking the last of her Holiday treats, employees are donning their own elf hats and bedecking our halls and cubes with their own form of Holiday magic.

 

 

Different teams put different spins on their decorating; from an all-out coordinated effort, to individualized decorations that reflect the personality of the decorator . It is fun to see how different areas get into the Holiday spirit. Continue reading

Top 5 Most Read Promega Papers in 2017

It’s always nice to know that someone is reading your paper. It’s a sign that your research is interesting, useful and actually has an impact on the scientific community. We were thrilled to learn that papers published by Promega scientists made the top 10 most read papers of 2017 in the journal ACS Chemical Biology. In fact, Promega scientists authored five of the top six most read papers! Let’s take a look at what they are.

#5 CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide

Publication Date (Web): September 11, 2017

This 2017 paper introduces our newest star: HiBiT, a tiny 11aa protein tag. To any scientist studying endogenous protein expression, the HiBiT Tagging System is your dream come true. It combines quantitative and highly sensitive luminescence-based measurement with a tiny-sized tag that can be easily inserted into endogenous protein via CRISPR/Cas9 gene editing with little impact on native protein function. The HiBiT Tagging System has been listed as a 2017 Top 10 Innovation by The Scientist, and it will drastically change how we study endogenous protein expression. Continue reading