Activating the Inflammasome: A New Tool Brings New Understanding

Innate immunity, the first line of immune defense, uses a system of host pattern recognition receptors (PRRs) to recognize signals of “danger” including invariant pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These signals in turn recruit and assemble protein complexes called inflammasomes, resulting in the activation of caspase-1, the processing and release of the pro-inflammatory cytokines IL-1ß and IL-18, and the induction of programmed, lytic cell death known as pyroptosis.

Innate immunity and the activity of the inflammasome are critical for successful immunity against a myriad of environmental pathogens. However dysregulation of inflammasome activity is associated with many inflammatory diseases including type 2 diabetes, obesity-induced asthma, and insulin resistance. Recently, aberrant NLRP3 inflammasome activity also has been associated with age-related macular degeneration and Alzheimer disease. Understanding the players and regulators involved in inflammasome activity and regulation may provide additional therapeutic targets for these diseases.

Currently inflammasome activation is monitored using antibody-based techniques such as Western blotting or ELISA’s to detect processed caspase-1 or processed IL-1ß. These techniques are tedious and are only indirect measures of caspase activity. Further, gaining information about kinetics—relating inflammasome assembly, caspase-1 activation and pyroptosis in time—is very difficult using these methods. O’Brien et al. describe a one-step, high-throughput method that enables the direct measurement of caspase-1 activity. The assay can be multiplexed with a fluorescent viability assay, providing information about the timing of cell death and caspase-1 activity from the same sample. Continue reading

Reveal More Biology: How Real-Time Kinetic Cell Health Assays Prove Their Worth

What if you could uncover a small but significant cellular response as your population of cells move toward apoptosis or necrosis? What if you could view the full picture of cellular changes rather than a single snapshot at one point? You can! There are real-time assays that can look at the kinetics of changes in cell viability, apoptosis, necrosis and cytotoxicity—all in a plate-based format. Seeking more information? Multiplex a real-time assay with endpoint analysis. From molecular profiling to complementary assays (e.g., an endpoint cell viability assay paired with a real-time apoptosis assay), you can discover more information hidden in the same cells during the same experiment.

Whether your research involves screening a panel of compounds or perturbing a regulatory pathway, a more complete picture of cellular changes gives you the benefit of more data points for better decision making. Rather than assessing the results of your experiment using a single time point, such as 48 hours, you could monitor cellular changes at regular intervals. For instance, a nonlytic live-cell reagent can be added to cultured cells and measurements taken repeatedly over time. Pairing a real-time cell health reagent with a detection instrument that can maintain the cells at the correct temperature means you can automate the measurements. These repeated measurements over time reveal the kinetic changes in the cells you are testing, giving a real-time status update of the cellular changes from the beginning to the end of your experiment. Continue reading

Genes to Cells to Genomes: Where Will Your Research Questions Take You?

Award presentation

Dr. Walter Blum wins trip to Promega headquarters as part of Promega Switzerland’s 25th Anniversary celebration.

Walter Blum knew how normal cells worked. He had studied and read about the pathways that regulated cell cycles, growth and development; he saw the cell as an amazingly well programmed, intricate machine. What he wanted to understand was: “Why does a cell become crazy? How does it escape immune system surveillance?”

Last week I had the opportunity to sit down with Dr. Blum, a customer of our Promega Switzerland branch. Dr. Blum won a trip to visit our campus in Madison for a week as part of an anniversary celebration for our Switzerland branch. While here, he got an inside peek at research and manufacturing operations, chatted with our scientists, met with our marketing teams and saw the sights in Madison. We talked about his work and what he learned and is taking back with him from his trip to Madison. Continue reading

Measuring Metabolic Changes in T cells with the Lactate-Glo™ Assay

Immunometabolism

Welcome to the emerging frontier of immunometabolism. A decade ago, immunology and metabolism were seen as two distinct areas of study. However, we now know that specific metabolic activities are required for proper immune cell differentiation and function. In tumor microenvironments, immune cells may even alter their metabolism to compete with tumor cells for limiting nutrients.

Glucose metabolism in Naïve vs Effector T cells

What does your car and T cells have in common? They both shift gears! You can shift gears on your car to change the way the engine’s power is used to match driving conditions; when you’re going uphill, you switch to a higher gear. Similarly, when T cells are activated, they change the way they generate energy to match functional needs. This makes sense because activated T cells (known as effector T cells) require more energy and biomass to support growth, proliferation and effector functions.

While cars run on gas, the main fuel for T cells is glucose. Each glucose molecule is broken down into pyruvate while generating 2 ATP molecules. Naïve T cells completely oxidize pyruvate through oxidative phosphorylation to generate 36 ATPs per glucose molecule. However, when T cells are activated and become effector T cells, glycolysis is used to produce 2 ATPs per glucose molecule. Continue reading

Optimizing tryptic digestions for analysis of protein:protein interactions by mass spec

Protein:protein interactions (PPIs) play a key role in regulating cellular activities including DNA replication, transcription,translation, RNA splicing, protein secretion, cell cycle control and signal transduction. A comprehensive method is needed to identify the PPIs before the significance of the protein:protein interactions can be characterized. Affinity purification−mass spectrometry (AP−MS) has become the method of choice for discovering PPIs under native conditions. This method uses affinity purification of proteins under native conditions to preserve PPIs. Using this method, the protein complexes are captured by antibodies specific for the bait proteins or for tags that were introduced on the bait proteins and pulled down onto immobilized protein A/G beads. The complexes are further digested into peptides with trypsin. The protein interactors of the bait proteins are identified by quantification of the tryptic peptides via mass spectrometry.

The success of AP-MS depends on the efficiency of trypsin digestion and the recovery of the tryptic peptides for MS analysis. Several different protocols have been used for trypsin digestion of protein complexes in AP-MS studies, but no systematic studies have been conducted on the impact of trypsin digestion conditions on the identification of PPIs.  A recent publication used NFB/RelA and BRD4 as bait proteins and five different trypsin digestion conditions (two using “on beads” and three using “elution” digestion protocols). Although the performance of the trypsin digestion protocols changed slightly depending on the different bait proteins, antibodies and cell lines used, the authors of the paper found that elution digestion methods consistently outperformed on-beads digestion methods.

Reference

Zhang, Y. et al. (2017) Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification−Mass Spectrometry-based Protein−Protein Interaction Analysis
J of Proteome. Res. 16, 3068–82.

Cytotoxicity Testing of 9,667 Tox21 Compounds using Two Real-Time Assays by Promega

A recent paper in PLOS One demonstrated real-time cytotoxicity profiling of approximately 10,000 chemical compounds in the Tox21 compound library, using two Promega assays, RealTime-Glo™ MT Cell Viability Assay and CellTox™ Green Cytotoxicity Assay. This is exciting to me, a science writer working at Promega; exciting because it’s tricky figuring out how to write about the utility of our products without sounding like an evangelist.

I don’t know about you, but I tend to shut out evangelists and their messages.

Instead of me telling you about real-time viability and cytotoxicity assays from Promega, here is an example of their use in Tox21 chemical compound library research.

What is the Tox21 compound library?
As described in the article by Hsieh, J-H. et al. (2017) in PLOS One:
“The Toxicology in the 21st Century (Tox21) program is a federal collaboration among the National Institutes of Health, including the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences and the National Center for Advancing Translational Sciences, the Environmental Protection Agency, and the Food and Drug Administration. Tox21 researchers utilize a screening method called high throughput screening (HTS) that uses automated methods to quickly and efficiently test chemicals for activity across a battery of assays that target cellular processes. These assays are useful for rapidly evaluating large numbers of chemicals to provide insight on potential human health effects.” Continue reading

Use of HIC high resolution chromatography and elastase for bottom up proteomics

One of the key applications used to characterize single or complex protein mixtures via bottom up proteomics is liquid chromatography−tandem mass spectrometry (LC−MS/MS).
Recent technical advances allow for identification of >10 000 proteins in a cancer cell line. On the peptide level chromatography methods, like strong cation exchange (SCX)
and hydrophilic interaction chromatography (HILIC), as well as high-pH reversed phase chromatography have been employed successfully. Because of its robustness
and ease of handling, the classical and still widely used approach for protein fractionation prior to LC− MS/MS is gel-based separation under denaturing conditions (SDS-PAGE).
Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used
to study post-translational modifications of proteins and drug−protein interactions.  HIC is a high-resolution chromatography mode based on the interaction of
weakly hydrophobic ligands of the stationary phase with hydrophobic patches on the surface of the tertiary structure of proteins. By employment of high concentrations
of structure-promoting (“kosmotropic”) salts, proteins in HIC retain their conform

In a recent publication, HIC was used to separate proteins, followed by bottom up LC−MS/MS experiments (1).  HIC was used to fractionate antibody species
followed by comprehensive peptide mapping as well as to study protein complexes in human cells. The results indicated that HIC−reversed-phase chromatography (RPC)
mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

An additional observation noted that tryptic digests of the antibody used in the study yielded a protein coverage of 56% for the light chain and 63.2% for the
heavy chain. A consecutive proteolytic digestion protocol combing on-filter trypsin and elastase digestion drastically improved sequence coverage of
both light (100%) and heavy chains (99.2%).

Reference
1. Rackiewicz, M. et al. (2017) Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes. J.Proteome.Res. 16, 2318–23.

Promega Tech Tours 2017: The Power to Solve for the Forensic Community

Governor John Bel Edwards of Louisiana made an appearance at the Promega Technology Tour in Baton Rouge. Pictures courtesy of Forensic Scientists at the Louisiana State Police.

2017 finds Promega on the road visiting cities all across the United States. This year we are presenting workshops from leaders in the forensics community on topics like maximizing success with challenging samples, improving laboratory efficiency and reducing backlogs, and new tools and technologies for the forensics laboratory. This highly popular workshop series is a great way to learn from your peers about new techniques and workflows and network with other forensics experts in your region.

There are several more tours left between now and the end of 2017. Find out if we are coming to a city near you and register today!

Just in Time for Wisconsin’s Invasive Species Month: Goats

Invasive kudzu vine

Invasive kudzu vine covering a forest

“In Georgia, the legend says
That you must close your windows
At night to keep it out of the house
The glass is tinged with green, even so
As tendrils crawl over the fields…”
—James Dickey (1)

I grew up in Georgia, where on a hot, humid summer day you could almost hear the hiss of growing vegetation, especially the Kudzu as it climbed over fence posts and encroached upon the roadside, the king of invasive species. In Florida you worry about the alligators along the roadside if you have a flat tire; in Georgia, beware the Kudzu.

Invasive species, animal and plant, are an issue in all ecosytems. Imported from distant (and not-so-distant) areas both by accident and misguided intent, invasive species are species that have escaped the checks and balances of natural competitors and predators that existed in their native habitats. This lack of predation and competition enables them to outcompete and overrun other species.

Kudzu may be one of the most recognized invasive species in the United States, but it’s probably not the worst. The zebra mussel is an aquatic animal that has invaded our waterways in Wisconsin. Oak savannahs and prairie ecosystems in the Midwest United States are threatened by many invasive plant species like garlic mustard and blister parsnip. The Wisconsin DNR lists nearly 150 restricted and/or prohibited invasive plant species in Wisconsin, including Kudzu (2). Continue reading

Real-Time Analysis for Cell Viability, Cytotoxicity and Apoptosis: What Would You Do with More Data from One Sample?

You are studying the effects of a compound(s) on your cells. You want to know how the compound affects cell health over a period of hours, or even days. Real-time assays allow you to monitor cell viability, cytotoxicity and apoptosis continuously, to detect changes over time.

Why use a real-time assay?
A real-time assay enables you to repeatedly measure specific events or conditions over time from the same sample or plate well. Repeated measurement is possible because the cells are not harmed by real-time assay reagents. Real-time assays allow you to collect data without lysing the cells.

Advantages of  Real-Time Measurement
Real-time assays allow you to: Continue reading