In Healthy Eating Less is More: The Science Behind Intermittent Fasting

Mix a love of eating with a desire to live a long, healthy life what do you get? Probably the average 21st century person looking for a way to continue enjoying food despite insufficient exercise and/or an age-related decline in caloric needs.

Enter intermittent fasting, a topic that has found it’s way into most news sources, from National Institutes of Health (NIH) and Proceedings of the National Academy of Sciences publications to WebMD and even the popular press. For instance, National Public Radio’s “The Salt” writers have tried and written about their experiences with dietary restriction.

While fasting has enjoyed fad-like popularity the past several years, it is not new. Fasting, whether purposely not eating or eating a restricted diet, has been practiced for 1,000s of years. What is new is research studies from which we are learning the physiologic effects of fasting and other forms of decreased nutrient intake.

You may have heard the claims that fasting makes people smarter, more focused and thinner? Researchers today are using cell and animal models, and even human subjects, to measure biochemical responses at the cellular level to restricted nutrient intake and meal timing, in part to prove/disprove such claims (1,2). Continue reading

Explore the World through All of Your Senses at the 2017 Forum on Consciousness

2017 forumThe 16th International Forum on Consciousness, Conscious Evolution: Awakening Through the Senses, in Madison, WI, May 18-19, will bring together a diverse group of presenters including Diane Ackerman (Best-selling Author, The Zookeeper’s Wife and A Natural History of the Senses),  Rebecca Alban Hoffberger (Founder and Director, American Visionary Art Museum), Louie Schwartzberg (Cinematographer, Director and Producer) and Andrea Stevenson Won (Director of the Virtual Embodiment Lab and Assistant Professor, Department of Communication, Cornell University), among others.

This year’s forum focuses on the senses, and explores how altering awareness of sensory inputs might change perceptions of reality and expand consciousness in positive directions for self and others.  In addition to presentations, attendees will have opportunities to engage in direct sensory experience through virtual reality, movement, sound and visuals, as well as tastes and aromas. Find more information at www.btci.org/consciousness.

The forum is open to the general public, but participation is limited to 300 people, and advanced registration is required. The registration fee is $250.00 (US), and scholarship opportunities are available. Registrants will have the opportunity to join a presenter for a small-group discussion over dinner on Thursday, evening, May 18, for an additional $85.00 (US).

About BTC Institute

The BTC Institute is a not-for-profit organization operated exclusively for educational, scientific and cultural purposes. Learn more about its K–12 programs, scientific course offerings, and annual educational forums and symposia at www.btci.org/.

Making a Case for Basic Research Funding

The value of public funding for “basic” versus “applied” research has long been questioned. To address this debate, the authors of a recent report in Science performed a large-scale evaluation of the value of public investment in biomedical research. After analyzing the relationship between the U.S. National Institutes of Health (NIH) grants and private patents, they found that distinguishing research as basic or applied is not useful in determining the productivity of grant funding.

Genetic research at the laboratoryThe $30 billion annual budget of the NIH makes it the largest source of life science funding in the world and provides a third of all US biomedical research and development. Although there has long been a strong argument for public investment in scientific research, attacks on the tangible benefits of this research persist. In particular, some opponents argue that “basic” research is too far removed from practical applications to be worthy of investment.

To quantify the effects of NIH funding for basic versus applied research, the authors looked at data from 365,380 grants awarded between 1980–2007 and compared their direct and indirect influence on patent filed. In particular, they decided to use patent-article citations as a measure of the influence of publicly funded science on commercial developments.

The researchers determined two ways in which research funded by the NIH could impact patenting; patents could be filed by the NIH-funded scientists or by private entities that cited research funded by NIH grants. This study found that roughly 10% of NIH grants were directly responsible for a patent while nearly a third of NIH grants had an indirect influence on patents. This indirect influence was attributed to articles associated with grant research that were later cited by a patent.

Delving deeper into the data, the authors found a similar pattern when looking at drugs brought to market that were associated with NIH grants; less than 1% of grants were directly linked to a patent associated with a drug, while 5% resulted in a publication cited by a patent for a drug. Despite public policies like the Bayh-Dole Act, that encourage academic researchers to file their own patents, the traditional route of applying public research to private patents continues to predominate.

For those that question the value of basic research and aim to steer public policy toward supporting applied research, this report makes a strong case against this way of thinking. The findings also suggest that using direct generation of patents as a metric for the return on investment of publicly funded biomedical research is not very useful since most of the effects of NIH research appear to be indirect.

In fact, the authors posit that basic research is just as productive as applied research in terms of patenting since the amount of grant research cited by private patents is much greater than the number of grants directly associated with patents. Perhaps it is time policy makers consider studies like this and forgo disseminating grant funds based on whether research is basic or applied.

The Randomness of Cancer

A major scientific study grabbed headlines recently, and the implications of its findings may affect many of us, if not all of us. In a paper published in Science by Cristian Tomasetti, Lu Li and Bert Vogelstein of Johns Hopkins University, the authors report that nearly two-thirds of known cancer causing mutations can be attributed to random mistakes that occur during DNA replication. In other words, the vast majority of these mutations occur in a spontaneous, uncontrollable way— it may not matter how you live your life, or what measures you take to decrease your chance of developing cancer. As the authors and the press put it, it really just comes down to luck.

gene-mutationDisturbing? For many, yes. It’s not easy to accept that one’s luck in activities such as winning the lottery may also apply to whether or not you will be touched by cancer. That is partly why this study is gaining so much attention.

As the authors explain in their publication, until now most cancer-causing mutations had been attributed to two major sources: inherited and environmental factors. But they found that a third kind of mutation, replicative (R) mutations that arise from unavoidable errors associated with DNA replication, account for 66 percent of mutations that drive cancer. Continue reading

Pollinator-Plant Interactions, Neanderthal Teeth, Desiccated Tardigrades and Blood Typing: Science News This Week

Keeping up with the pace of scientific discoveries being published each week can be difficult. Here I share a few scientific publications that piqued my interest over the past week:

Pollinators influence evolution of plant traits

Brassica rapa cv. By I, KENPEI [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons

Brassica rapa cv. By I, KENPEI [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons

To explore the plant-pollinator relationship, researchers studied field mustard, a relative of oilseed rape, under the influence of three pollination conditions: by hand, by bumblebee and by hoverfly. After nine generations, the plants were visually changed. The ones pollinated by bumblebees were taller than the original plant; the ones pollinated by hoverflies, shorter. In addition, the bumblebee-pollinated field mustard developed more fragrant floral compounds and more UV-reflecting petals while the hoverfly-pollinated plants became more self-pollinated. While this experimental was done in isolation from other plants, the research suggests a pollinator can influence the traits evolved by a plant.

Read the Nature Communications research article.

Calculus from Neanderthals reveal diet and probable self-medication

The calcified plaque on teeth of five Neanderthal skulls was scraped, PCR amplified and sequenced to examine what could be learned of diet, behavior and disease. One specimen was eliminated because the DNA did not amplify, one due to environmental contamination, leaving two specimens from Spain and one from Belgium that were used for analysis. The Belgian individual had rhinoceros, sheep and mushrooms caught in its teeth while the Spanish Neanderthals consumed mushrooms, pine nuts, forest moss, and poplar as well as plant fungus. The last two items were of interest because these sequences were found in the Neanderthal suffering from a dental abscess. Poplar contains the active ingredient in aspirin and the fungus was Penicillium from which the first antibiotic was derived. Researchers also compared the bacterial sequences of oral microbes across hominid species and sequenced a draft genome of the 48,000-year-old oral bacterium Methanobrevibacter oralis subsp. neandertalensis.

Read the research article in Nature.

The desiccation tolerance of water bears explained

Scanning electron micrograph of an adult tardigrade (water bear). By Goldstein lab - tardigrades (originally posted to Flickr as water bear) [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

Adult tardigrade (water bear). By Goldstein lab – tardigrades (originally posted to Flickr as water bear) [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

The microscopic tardigrades are a creature that inspire microbiologists and others with their cuteness (hence the nickname water bears) and their resilience under dry conditions. However, little was known why they can survive desiccation. New research reveals that unlike other organisms that use sugar to resist drying, tardigrades use disordered proteins to protect itself. These proteins lack stable 3D structures and form glass-like protection under desiccation. Not surprisingly, these proteins are called tardigrade-specific intrinsically disordered proteins or TDPs. By transferring TDPs into yeast, researchers were able to increase yeast tolerance to drying as well as enhance survival.

Read a summary of the research in The Scientist (contains link to research article).

Blood type determined in 30 seconds using a paper-based assay

Matching blood type usually involves centrifuging blood samples to test both red blood cells and plasma, and takes about 30 minutes. However, a rapid test would be useful in emergencies while an alternate test for those without the funds for lab facilities would be beneficial. What about paper infused with dye that could show blood type in seconds, no centrifugation needed? In fact, researchers have developed a paper-based assay that uses microliter volumes of whole blood to determine blood type with a visual indicator. Using immobilized antibodies and a green dye, the blood will clump in the presence of an antibody that is recognized, turning the paper blue to show it has the marker for A (left side of chip) or B (right side of chip). Type AB will have both markers while type O has neither, turning the paper brown on both sides of the chip. Rare blood types and five Rhesus markers can also be analyzed using this paper-based chip assay, starting with a small sample of whole blood.

Read a summary of the research and watch a video of the paper assay chip in Science (contains link to research article).

So NASA Found Some New Exoplanets…Now What?

34412848-March-8-Planets-600x600-WEBYou have probably heard a lot of excitement over NASA’s recent announcement about the discovery of seven earth-size planets found orbiting around the star TRAPPIST-1, which is part of the constellation Aquarius.

These exoplanets are notable because they exist within the habitable zone of the star (nicknamed Goldilocks planets because this area is not too hot and not too cold) and are probably rocky with the potential to contain water on their surface.

A lot of the enthusiasm revolves around the hope that one of these planets might harbor extraterrestrial life or could be suitable for human inhabitants. Of course, many further observations must be made to determine if these scenarios are plausible, not to mention the huge advances in technology that would need to occur so we could actually verify the planetary conditions or send humans 40 light-years away. Continue reading

Writing Scientific Papers: Is There More To This Story?

The tactic of “telling a good story” is nothing new within the business of selling, marketing and even educating about science. The word itself, science & storytelling“storytelling,” achieved buzzword status a few years ago in the corporate world, so it’s no surprise that it now touches industry scientists.  But the importance of telling a good story within the realm of scientific peer-reviewed papers?  That is something new, and it may impact how scientists write up their results from this point forward.

In a provocative scientific study published in PLOS ONE in December 2016, researchers from the University of Washington showed that “Narrative Style Influences Citation Frequency in Climate Change Science.” Perhaps the results they report are unique to climate change science—an area of science especially susceptible to public perception. But then again, perhaps not. This paper may be worth considering no matter what field of science you call your own.

The authors—Ann Hillier, Ryan Kelly, and Terrie Klinger—used metrics to test their hypothesis that a more narrative style of writing in climate change research papers is more likely to be influential, and they used citation frequency as their measure of influence. A sample of 732 abstracts culled from the climate change literature and published between 2009 and 2010 was analyzed for specific writing parameters. The authors concluded that writing in a more narrative style increases the uptake and influence of articles in this field of science and perhaps in scientific literature across the board. Continue reading

A Big Protective Step Forward for A Rare Bee

A rusty-patched bumblebee on Culver’s root in the UW–Madison Arboretum. Photo Copyright: SUSAN DAY/UW-MADISON ARBORETUM

A rusty-patched bumblebee on Culver’s root in the UW–Madison Arboretum. Photo Copyright: SUSAN DAY/UW-MADISON ARBORETUM

Bees have been in the news many times over the past several years. Much of the concern has been focused on the collapse of honey bee colonies because these bees collect nectar to create honey and can be transported for use as pollinators for farmers. Alongside the plight of the honey bee are the declines in the population of native bees in the United States. These bees include insects like the big, fuzzy bumble bees, tiny, iridescent green sweat bees and dark blue mason bees. The native bees live in different conditions. They may be solitary, have a small colony or even nest close together in a communal arrangement, but never in the numbers likely to be seen for a honey bee colony. These lower-density populations can make seeing a change in native bee numbers more difficult. While honey bees have gained the majority of bee decline attention, native bees have suffered dramatic population loss with long-term consequences for the plants they pollinate and the animals that depend upon those plants.

On January 11, 2017, in a landmark decision by the United States Fish and Wildlife Service, the one of the rarest native bees called the rusty-patched bumble bee (Bombus affinis) has been listed as threatened, and this designation will go into effect February 10, 2017. This is the first bee in the U.S. that has been placed on the Endangered Species list. The rusty-patched bumble bee derived its name from the rust-colored patch found on its back. Continue reading

Did Dinosaurs Take Too Long to Hatch?

A new approach to dinosaur embryology has revealed another layer to our understanding of the demise of dinosaurs and rise of mammals as a result of the end-Cretaceous mass extinction event. In a recent Proceedings of the National Academy of Sciences paper, a group of researchers led by Gregory Erickson hypothesized that dinosaur eggs may have growth lines present on embryonic teeth that could be used to determine incubation times.

dinosaur-embryoNot much is understood about dinosaur embryology, aside from what is known about birds. This is in part because fossils of dinosaur eggs, especially those containing embryonic skeletons, are among the rarest in the world. Despite this difficulty, using these fossils to refine estimated incubation times of dinosaur embryos can shed light on their development, life history and evolution.

Historically, paleontologists have assumed that dinosaur incubation periods were rapid based on their extant counterparts, birds. Considered living dinosaurs, birds are a logical surrogate from which to extrapolate dinosaur incubation times. It is important to note that embryonic incubation in birds is different from other living relatives of dinosaurs, modern reptiles. While reptile embryos develop slowly, birds differ by laying fewer, larger eggs with rapid incubation. Continue reading

Plumage Revealed: A 99 Million Year Old Feathered Coelurosaur Tail Trapped in Amber

Touching a Dinosaur—Almost

Imagine holding a 99 million year old feathered dinosaur tail in the palm of your hand. The only thing keeping you from actually touching its feathers? A few centimeters of petrified resin. This was reality for the group of scientists who published their findings about this discovery in the December issue of Current Biology (1).

It all began roughly ninety-nine million years ago when a young coelurosaur met an untimely death. Continue reading