Uncovering the Neuroscience of Imagination Using a Virtual Reality World for Rats

Imagination is often considered a uniquely human trait. Simply put, it is what allows us to think about things that aren’t happening in that moment, and it plays an integral part in our day-to-day lives. We use it when we think through our calendar for the day, consider restaurant options for dinner, or visualize the best route. It turns out this trait might not be as unique to humans as we thought. In fact, a study published in Science suggests that we might share this ability with rats (1).

Rats are the most divisive of rodents. Some people see disease-carrying scourges; some see intelligent, affectionate creatures with larger-than-life personalities; and still others simply can’t get past their bare tails and small eyes. Love them or hate them, science has shown that there is more to these creatures than meets the eye. They are intelligent, ticklish and empathetic; and the study in Science suggests, imaginative.

Continue reading “Uncovering the Neuroscience of Imagination Using a Virtual Reality World for Rats”

Shocking Revelation about Starfish Anatomy: Just a Head

Two starfish on the beach
Recent research reveals that starfish anatomy is even stranger than previously thought

Most animals in the world are what biologists refer to as “bilateral”—their left and right sides mirror one another. It is also typically easy to tell which part of most animals is the top and which is the bottom. The anatomical arrangements of certain other animals, however, are slightly more confounding, for instance in the case of echinoderms, which include sea urchins, sand dollars and starfish. These animals are “pentaradial”, with five identical sections of the body radiating from a central axis. The question of how these creatures evolved into such a state has been a puzzle pondered by many a biologist, with little progress made until recently. In a new study published in Nature, scientists closely examining the genetic composition of starfish point to some key evidence that suggests a starfish is mostly just a head.

Starfish are a deuterostome, belonging to the superphylum Deuterostomia. Most deuterostomes are bilateral, leading scientists to believe that, despite their peculiar body plan, starfish evolved from a bilateral ancestor. This is supported by the fact that starfish larvae actually start out bilateral, and eventually transform into the characteristic star shape. But where the head of the starfish is, or whether it even has one, has proved difficult for scientists to parse out, especially since their outward structure offers no real clues.

There have been a number of theories posited, such as the duplication hypothesis—where each of the five sections of a starfish could be considered “bilateral”, placing the head at the center—and the stacking hypothesis, which asserts that the body is stacked atop the head. In a bilateral body plan, anterior genes broadly code for the front, or the head-region, and posterior genes code for the trunk, or the “torso”, and tail. Researchers in this new study looked at the expression of these genes throughout the body plan as a possible source of clarity as to which part of the starfish is its head and which parts comprise the body.

To this end, researchers used advanced molecular and genetic sequencing techniques including RNA tomography and in situ hybridization. RNA tomography allowed them to create a three-dimensional map of gene expression throughout the limbs of the sea star Patiria miniate. In situ hybridization is a fluorescent staining technique that offered them a means by which to examine where exactly anterior or posterior genes are expressed in the sea star’s tissue, providing a clearer picture of genetic body patterning.

Remarkably, scientists found that anterior or head-coding genes were expressed in the starfish’s skin, including head-like regions appearing in the center, or midline, of each arm, while tail-coding genes were only seen at the outer edges of the arms. Perhaps even more remarkable was the lack of genetic patterning accounting for a trunk or torso, leading scientists to the conclusion that starfish are, for the most part, just heads.

Whether this holds true for other echinoderms remains to be proven, and further investigations into starfish anatomy may seek to pinpoint where in the timeline the trunk was lost. Overall, research like this helps scientists understand how life came to look the way it does. Oddly shaped creatures like the humble starfish can offer insight into the strange evolutionary processes that result in such rich biodiversity across the animal kingdom.


Works cited:

  1. ‘A disembodied head walking about the sea floor on its lips’: Scientists finally work out what a starfish is | Live Science
  2. Molecular evidence of anteroposterior patterning in adult echinoderms | Nature
  3. Starfish Are Heads–Just Heads – Scientific American
  4. Study reveals location of starfish’s head | Stanford News

Reviewing the Importance of circRNA

In recent years following the COVID-19 pandemic, RNA has gained attention for its successes and potential use in vaccines and therapeutics. One avenue of interest in RNA research is a non-coding class of RNA first identified almost 50 years ago, circular RNA (circRNA).

In 1976, Sanger et al. first identified circRNA in plant viroids, and later additions to the field found them in mice, humans, nematodes, and other groups. Unlike linear RNA, circRNA are covalently closed loops that don’t have a 5′ cap or 3′ polyadenylated tail. Following its discovery, researchers thought circRNA was the product of a rare splicing event caused by an error in mRNA formation leading to low interest in researching the subject (1).

In the early 2010s, following the development of high throughput RNA sequencing technology, Salzman et al. determined that circRNAs were not a result of misplicing, but a stable, conserved, and widely sourced form of RNA with biological importance. Since noncoding RNA makes up the majority of the transcriptome it’s an incredibly important field of study. We now recognize circRNAs for their potential as disease biomarkers and importance in researching human disease (2).

Continue reading “Reviewing the Importance of circRNA”

For Frogs, Surviving the Heat Could Come Down to What Is in Their Gut

Amphibians are the most threatened vertebrate class worldwide. Because they lack the ability to regulate their own temperature and moisture levels, climate change is playing a significant role in this growing peril (1). Climate change impacts amphibian survival in several ways. In addition to habitat loss, growing drought conditions make maintaining body moisture levels challenging and warming temperatures restrict activity periods needed for reproduction as well as increasing the risk of heat stress.

Heat tolerance varies by species, and understanding what influences these differences could help predict species survival. The gut microbiota is known to affect a wide range of functions in host animals, and recently studies have begun to investigate its role in host thermal tolerance (2).

Continue reading “For Frogs, Surviving the Heat Could Come Down to What Is in Their Gut”

Treating Solid Tumors: Combining CAR-T Cell Therapy with Probiotics

Chimeric Antigen Recepter (CAR)-T cell therapy is a personalized immunotherapy that harnesses the patient’s own immune system to combat cancer. It is done by engineering the patient’s T cells to specifically target and attack cancer cells in their body, and it has shown great success in treating various blood cancers such as leukemia.

Treating solid tumors with CAR-T cells, however, has proved much more challenging. This is mainly because solid tumors contain a heterogeneous population of cells, expressing a variety of antigens—many of which are also expressed in healthy cells. Therefore, T cells targeting solid tumors could potentially attack healthy tissue, resulting in serious side effects. In addition, solid tumors create a hostile microenvironment that is difficult for CAR-T cells to infiltrate.

Continue reading “Treating Solid Tumors: Combining CAR-T Cell Therapy with Probiotics”

Glowing Testimonies: A Review of NanoLuc® Use in Model Organisms

NanoLuc®

Model organisms are essential tools in the pursuit of understanding biological processes, elucidating the mechanisms of diseases, and developing potential treatments and therapies. Use of these organisms in scientific research has paved the way for groundbreaking discoveries across various fields of biology. In particular, non-mammalian models can be valuable due to characteristics such as rapid life cycles, low cost, and amenability to use with advanced genetic tools, including bioluminescent reporters such as NanoLuc® Luciferase.

NanoLuc® is a small (19.1 kDa) luciferase enzyme originating from deep sea shrimp that is 100x brighter than firefly or Renilla luciferase. It utilizes a furimazine substrate to produce its bright glow-type luminescence. In the decade following its development, the NanoLuc® toolbox has expanded to include NanoBiT® complementation, NanoBRET™ energy transfer methods, and new reagents such as the Nano-Glo® Fluorofurimazine In Vivo Substrate (FFz) which was designed for in vivo detection of NanoLuc® Luciferase, NanoLuc® fusion proteins or reconstituted NanoBiT® Luciferase. In addition to the aqueous-soluble reagents increased substrate bioavailability in vivo, with fluorofurimazine, NanoLuc® and firefly luciferase can be used together in dual-luciferase molecular imaging studies.

Here we spotlight some recent research that demonstrates how the expanded NanoLuc® toolbox can be adapted to use in non-mammalian models, shedding new light on fundamental biological processes and advancing our understanding of complex mechanisms in these diverse organisms.

Continue reading “Glowing Testimonies: A Review of NanoLuc® Use in Model Organisms”

Clovibactin: A Revolutionary Antibiotic with No Resistance

Pills

Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever-increasing range of infections. It’s a leading mortality factor worldwide, but the newly discovered antibiotic, clovibactin, may offer a pivotal solution. It effectively kills drug-resistant bacterial pathogens without detectable resistance—even multidrug-resistant “superbugs.”

Continue reading “Clovibactin: A Revolutionary Antibiotic with No Resistance”

RAF Inhibitors: Quantifying Drug-Target Occupancy at Active RAS-RAF Complexes in Live Cells

Mitogen-activated protein kinases (MAPKs) are a large family of proteins that regulate diverse cellular functions in eukaryotes, including gene expression, proliferation, differentiation and apoptosis (1). MAPK signaling pathways typically include three sequentially activated kinases, and these pathways are triggered in response to extracellular stimuli, such as cytokines, mitogens, growth factors and oxidative stress (1). Ultimately, the signal is transmitted to the nucleus, with the activation of a specific transcription factor that modulates the expression of one or more genes.

Among MAPK pathways, the RAS-RAF-MEK-ERK signaling pathway has been studied extensively. Mutations in RAS family proteins and resultant dysregulation of the signaling pathway are implicated in a variety of cancers. Therefore, this pathway is a popular target for anticancer drug development.

An overview of the RAS-RAF-MEK-ERK signaling pathway.
Continue reading “RAF Inhibitors: Quantifying Drug-Target Occupancy at Active RAS-RAF Complexes in Live Cells”

Ancient Worm Reveals Simple Hack for Remaining Ageless After 46,000 Years

If you could, would you enter a suspended metabolic state for the chance to reawaken 46,000 years from now, as you are today? For one nematode discovered in Siberian permafrost, the answer is a resounding “yes”. A study published in late July of this year details recent research that expands on a paper published in 2018 wherein scientists announced that they successfully reanimated a small but resilient nematode, or roundworm, who remained alive for tens of thousands of years in a state called cryptobiosis after being frozen in extreme Arctic soil conditions.

Blue roundworm on a black background
Caenorhabditis elegans, a type of roundworm whose dauer larvae are capable of cryptobiosis
Continue reading “Ancient Worm Reveals Simple Hack for Remaining Ageless After 46,000 Years”

Breathtaking Breakthrough: How Gut Microbial VOCs Are Revealing Biomarkers, One Exhale At A Time

The human microbiome, the bustling cooperative of all the microscopic creatures that naturally colonize in and on our bodies, wields a surprising amount of influence over many of the unseen processes that are critical to our overall health and wellness. Over the course of decades, we have learned that this is particularly true for the microbes that reside in our gastrointestinal tract, collectively known as our gut microbiota.

Our gut microbiota is constantly communicating with our bodies, though our relationship with our gut can feel like trying to have a conversation with someone who only speaks a language we do not know or understand—you can take an educated guess at what they are saying based on their expressions and gestures, but the true message and meaning behind their actions is not always discernable. So while we can feel that someone in our gut is unhappy when we have a tummy ache, the true mechanism behind exactly who is unhappy and why, is not as obviously deduced or understood.

What if there was a tool that could help us more easily interpret the language of our microbiota, giving us the means to both better understand our microbiomes as well as to detect biomarkers of various diseases? Recent studies have shown that such a solution may be (quite literally) right under our noses: our breath.

Continue reading “Breathtaking Breakthrough: How Gut Microbial VOCs Are Revealing Biomarkers, One Exhale At A Time”