Lessons from My Kindergartener’s First Podcast

I am a podcast junkie. In a given week I will listen to 15-20 podcast episodes, while only watching a couple television shows. Podcasts allow me to partake in my favorite pastime, learning, while offering distraction from mundane and time-consuming activities.

Podcasts help me pass the time during my daily 1.5+ hour round trip commute, while running (including during races) and in waiting rooms or airport terminals. Not surprisingly, many of these include science podcasts.

So, I was ecstatic to hear about a new science podcast for kids, Wow in the World, that I could share with my 5-year-old daughter. I considered it an experiment, assuming that she would listen to one or two episodes and lose interest, not expecting her to stay engaged by 20 minutes of audio alone.

I couldn’t have been more wrong. Within a few seconds, she was singing along with the theme song and after a couple minutes she was fully engaged and asking questions about what was being discussed. In a world where our DVR is filled with a backlog of recorded shows for her to watch on TV, she had trouble understanding that we had to wait until next week for another episode. In the meantime, she enthusiastically listened to the same episode 3 or 4 times, picking up something new each time.

This particular podcast really honed in on topics sure to spark interest in kids, such as the velocity of poop, tooting cows and slug slime. But they also addressed more abstract subject matter like human origins, G-forces and space science, explaining complex new scientific discoveries in an entertaining and memorable way.

Continue reading

How Do I Choose the Right GoTaq® Product to Suit My Needs for EndPoint PCR?

We offer a wide array of GoTaq® DNA Polymerases, Buffers and Master Mixes, so we frequently answer questions about which product would best suit a researcher’s needs. On the product web page, you can filter the products by clicking the categories on the left hand side of the page to narrow down your search. Here are some guidelines to help you select the match that will best suit your PCR application. Continue reading

Predicting the Future with Dirty Diapers

Microbiome research is booming right now, with more and more evidence that our personal health and environment are shaped and influenced by the microbes we harbor and encounter. One area of study I find particularly interesting is how the microbiome we acquire at birth affects our long-term health.

A flood of new findings have emerged related to infant microbiome research, leaving parents like me scratching their heads about whether the secrets to our children’s future health may exist in the seemingly endless stream of dirty diapers we change.

The human microbiome evolves and develops in utero and then during and after delivery is colonized by bacteria encountered during exposure to the external environment. The initial composition of microbes an infant is populated with influences their lifelong microbiome signature and can be influenced by many factors along the way, including the microbiome community of the mother, use of antibiotics or other antibacterial substances, breastfeeding, C-section birth. These variables have been correlated with disruption of the infant microbiome and associated with differences in cognitive development and the development of disease, such as asthma and allergies.

In general, these correlations are discovered by taking a fecal sample from an infant and analyzing the DNA sequences of the bacteria present. The microbiome composition of the individual is then compared against different individual characteristics (such as presence or absence of a disease) at the time of the sample and/or at later points in time. Finally researchers look for statistically significant patterns among individuals with similar characteristics or microbiome communities. This type of study can reveal associations between the microbiome and individual traits, but further experiments are needed to show causation. Continue reading

“Reverse” Molecular Reactions in DNA through Mind-Body Interventions

While my morning routine typically only involves a large cup of coffee, increasingly more Americans are beginning their days with a set of sun salutations. Sun salutations are a series of poses originating from yoga, one of the most popular types of mind-body intervention in the United States. Along with yoga, other commonly recognized mind-body interventions (MBI) include meditation, mindfulness, Tai chi, and Qigong. Despite the fact that each of these activities differ in the amount of physical effort required, they all view mental and physical health as single cohesive system.

The influence of overall mind-body intervention on health and wellness is an ancient concept that is now revolutionizing Western medicine. In the past, Western medicine has focused primarily on the health of the physical body. Yoga and meditation were viewed as beneficial, but were less likely to be recommended by clinicians as a method for relief. Now, with recent developments in gene expression analysis techniques, we have a better understanding of biological mechanisms and how they interact with psychological variables. A possible shift in clinician’s philosophies can be seen in the steady rise in the complementary health approaches of yoga, Tai chi, and qi gong1.

To completely understand how MBI affects a person’s health, we must first realize the links between stress and the conserved transcriptional response to adversity (CTRA). CTRA refers to the common molecular pattern discovered in individuals facing hardship. Whether it be in the form of diagnosis of a life-threatening disease or the death of a loved one, the characteristics of CTRA stay consistent. CTRA causes an influx in the production of epinephrine and norepinephrine. These neuromodulators then affect the production of transcription factors. Continue reading

Use of HIC high resolution chromatography and elastase for bottom up proteomics

One of the key applications used to characterize single or complex protein mixtures via bottom up proteomics is liquid chromatography−tandem mass spectrometry (LC−MS/MS).
Recent technical advances allow for identification of >10 000 proteins in a cancer cell line. On the peptide level chromatography methods, like strong cation exchange (SCX)
and hydrophilic interaction chromatography (HILIC), as well as high-pH reversed phase chromatography have been employed successfully. Because of its robustness
and ease of handling, the classical and still widely used approach for protein fractionation prior to LC− MS/MS is gel-based separation under denaturing conditions (SDS-PAGE).
Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used
to study post-translational modifications of proteins and drug−protein interactions.  HIC is a high-resolution chromatography mode based on the interaction of
weakly hydrophobic ligands of the stationary phase with hydrophobic patches on the surface of the tertiary structure of proteins. By employment of high concentrations
of structure-promoting (“kosmotropic”) salts, proteins in HIC retain their conform

In a recent publication, HIC was used to separate proteins, followed by bottom up LC−MS/MS experiments (1).  HIC was used to fractionate antibody species
followed by comprehensive peptide mapping as well as to study protein complexes in human cells. The results indicated that HIC−reversed-phase chromatography (RPC)
mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

An additional observation noted that tryptic digests of the antibody used in the study yielded a protein coverage of 56% for the light chain and 63.2% for the
heavy chain. A consecutive proteolytic digestion protocol combing on-filter trypsin and elastase digestion drastically improved sequence coverage of
both light (100%) and heavy chains (99.2%).

1. Rackiewicz, M. et al. (2017) Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes. J.Proteome.Res. 16, 2318–23.

Searching for Secrets in Single Cells

There has been a lot of effort recently to perform whole genome sequencing, for humans and other species. The results yield new frontiers of data analysis that offer a lot of promise for groundbreaking scientific discoveries.

One objective of human genome sequencing has been to identify sources of disease and new therapeutic targets. This movement has opened the door to create personalized medicine for cancer, whereby the genetic makeup of an individual’s tumors can be used to determine the most effective drug intervention to administer.

Interest in studying the characteristics unique to individual cells seems obvious when considering the function of healthy cells versus tumor cells, or brain cells compared to heart cells. What has surprised scientists is the realization that two cells in the same tissue can be more different from each other, genetically, than from a cell in another organ.

For example, a small number of brain cells with a specific mutation can lead to some forms of epilepsy while healthy people may also carry cells with these mutations, but too few to cause disease. The lineage of a cell, where it came from and what events shaped its development, ultimately determines what diseases can exist.

Continue reading

Five Ways to Explain CRISPR Without Delivering a Lecture

Recently a FaceBook friend of mine (who is not a scientist) shared a video from WIRED Science where the concept of CRISPR is explained at 5 Levels of Difficulty— for a 7 year old, a teenager, a college student, a grad student and a CRISPR expert.

First it was pretty amazing to me that my non-scientist friends are interested enough in learning about CRISPR to share this type of information—perhaps showing just how popular and exciting the method has become. People outside the scientific field are hearing a lot about it, and are curious to know more.

This video does a great job of explaining the technique for all its intended audiences. It also is a nice illustration of how to share information in an easily understandable format. Even with the 7 year old and 14 year old, the information is shared in a conversational way, with everyone involved contributing to sharing information about CRISPR.

Really nice. Here’s the WIRED video:

Continue reading

Rapid DNA Act of 2017: What is It?

On May 16, 2017, the U.S House of Representatives and the U.S. Senate passed the Rapid DNA Act of 2017 (H.R.510 and S.139, respectively). The bill was sponsored by Senator Orrin Hatch (R-UT) and Representative James Sensenbrenner (R-Wis) and enjoyed bipartisan support, ending up with seven Republican and five Democratic cosponsors in the Senate, and seventeen Republican and seven Democratic cosponsors in the House. The bill was passed by unanimous consent voice votes in both chambers.

So what is the Rapid DNA Act of 2017 all about?

Simply put, the act will expand the use of rapid DNA technology in law enforcement departments by creating a way for them to use the results they get by connecting them to the FBIs Combined DNA Index System (CODIS). Still curious? Read on and you will learn much more about what the Rapid DNA Act of 2017 does and doesn’t do. Continue reading

Findings May Reveal Earliest Evidence of Selective Dog Breeding

Image showing DeLong chain of islands.

Zhokhov Island is part of the DeLong chain of islands off the north coast of Siberia. Image courtesy of Wikimedia Commons.

A report in the June 2, 2017 edition of Science magazine digs into findings from an ancient archaeological site on the very remote and very, very cold Zhokhov Island, to show that the locals, hardy human hunters, not only lived and worked with dogs, but also quite probably selectively bred the dogs for certain traits.

Archaeologist Vladmir Pitulko with the Russian Academy of Sciences has been excavating on Zhokhov Island since 1989, where he has found dog bones as well as remnants of wooden sleds. With archaezoologist Aleksey Kasparov, also of the RAS, they’ve compared two of the most complete dog skulls found to those of contemporary Siberian Huskies and wolves.

Pitulko and Kasparov wanted to first determine if the skulls were those of dogs or wolves. They first employed two key skull ratios: snout height to skull length and cranium height to skull length. Using these ratios, they were able to reliably distinguish between skulls of a modern wolf and husky. Continue reading

Creating ART from 3D Printed Ovaries

It is remarkable to me how quickly in vitro fertilization has gone from an experimental, controversial and prohibitively expensive procedure to becoming a mainstream option for those struggling with fertility issues. What was unheard of in my parents’ generation is nothing extraordinary among my friends who are having children.

My personal observations are supported by the CDC, which reported that 1.6% of all infants born in the U.S. in 2015 were the result of assisted reproductive technology (ART). This is a 33% increase since 2006, which can be attributed to rapid advances and refinements of the various technologies available to those seeking reproductive assistance.

It challenges the mind to imagine what reproductive technologies might be widespread when my children and their friends are adults. When experts speculate about the future of human reproduction, there always seems to be a lot of focus on provocative scenarios that portend a dystopian future, such as designer babies. What gets lost are some of the more general scientific advances that are being applied to ART in fascinating ways.

While improvements in reproductive technologies serve many, one group that remains underserved are pediatric cancer patients. As a result of treatment, these patients are often faced with impaired ovarian function that can prevent puberty and result in infertility. In vitro fertilization and ovarian transplants are currently used, but do not provide lasting solutions for all individuals.

In response to this need, researchers are working to develop an organ replacement that can provide long-term hormone function and fertility for all patients.  A recent study in Nature Communications presented encouraging results in mice using bioprosthetic ovaries that may further revolutionize the field of ART. Continue reading