Kinase Drug R & D: Helping Your Inhibitor Make the Cut

Finding the best inhibitor for your kinase doesn’t have to be a long trip.

A recent paper in Journal of Medicinal Chemistry, “Discovery of GDC-0853: A Potent, Selective and Noncovalent Bruton’s Tyrosine Kinase Inhibitor in Early Clinical Development” (1) details some elegant work in chemical modification and extensive testing during exploration of inhibitors for BTK. As a warmup to the article, here is a brief BTK backstory.

BTK (Bruton Tyrosine Kinase): Importance in Health and Disease 

Bruton’s tyrosine kinase (BTK) was initially identified as a mediator of B-cell receptor signaling in the development and functioning of adaptive immunity. More recent and growing evidence supports an additional role for BTK in mononuclear cells of the innate immune system, especially dendritic cells and macrophages. For example, BTK functions in receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. BTK has recently been identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome (2). Continue reading

Kinase Inhibitors as Therapeutics: A Review

The review “Kinase Inhibitors: the road ahead” was recently published in Nature Reviews Drug Discovery. In it, authors Fleur Ferguson and Nathanael Gray provide an up-to-date look at the “biological processes and disease areas that kinase-targeting small molecules are being developed against”. They note the related challenges and the strategies and technologies being used to efficiently generate highly-optimized kinase inhibitors.

This review describes the state of the art for kinase inhibitor therapeutics. To understand why kinase inhibitors are so important in the development of cancer (and other) therapeutics research, let’s start with the role of kinases in cellular physiology.

The road ahead for kinase inhibitor studies.

Why Kinases? Continue reading

A Surprising New Role for Body Fat?

This cloaked fat cell just might be a superhero.

Forty-some years ago fat was just fat. And it was regarded with disdain, to say the least.

An entire industry existed to help get rid of fat, using what was then the latest mass media technology, television. If you wanted to get rid of fat you could exercise with Jack LaLanne as he worked out on television. We exercised in elementary school PE class to a vinyl recording of “Chicken Fat”. You could strap into a device that employed shaking to get rid of the fat from your “hips”, or eat a piece of chocolate fudge with a hot beverage before meals to curb your appetite.

Fat was not our friend. We knew long before the current diabetes epidemic that being overweight was not good for our health.

Fast forward to the 21st century, where we’ve learned that some forms of fat are actually good for you–important in metabolism, growth and immunity. The variety of types of mammalian fat include brown adipose tissue, beige adipose tissue and white adipose tissue, and it’s possible to convert one to the other under certain conditions. For details on these types of adipose tissue, read this article —after you finish this blog. Continue reading

Black-Footed Ferrets: Back from the Brink

Bff = black footed ferret

Giving some love to a BFF (Black-Footed Ferret).

Today is Valentine’s Day (February 14) and our thoughts turn to doing something special for a significant other (so),  a best friend (bf) or best friend forever (bff).  In this blog we consider doing something special for a bff, but the bff at focus here is not human.

This bff is the black-footed ferret.

That’s correct—we’re talking about the weasel-like critter with the black mask, black tail tip and black feet. This small, wiry animal, with the help of some particularly dedicated humans, has had an amazing come-back story since the 1970s, when these ferrets were believed to be extinct.

About the BFF (Black-Footed Ferret)
The black-footed ferret, Mustela nigripes, is a member of the family Mustelidae, which includes mink, badger, marten, fisher, polecat and wolverine (of course domestic ferrets are also members of this family). Like mink and other members of the mustelidae, bff are long, slender animals that average 18 to 24 inches in length. Black-footed ferrets weigh 1½ –2½ lbs. Female ferrets are “jills”, males are “hobs” and juvenile ferrets are “kits”. The average life span of a black-footed ferret in the wild is 1–3 years. Continue reading

NanoBRET™ Target Engagement Intracellular Kinase Assay Nominated for Scientists’ Choice Award®

Joins Nominees for Best New Drug Discovery & Development Product 2017

SelectScience® nominates NanoBRET™ Target Engagement Kinases Assay as a Best New Drug Discovery & Development product for 2017.

We were honored recently to have NanoBRET™ Target Engagement Intracellular Kinase Assays nominated by SelectScience® as one of the Best New Drug Discovery & Development Products of 2017. This is a Scientists’ Choice Award®, an opportunity for scientists like you worldwide to vote for your favorite new drug discovery/development product.

We are super excited about both the nomination and the NanoBRET™ Target Engagement Intracellular Kinase Assay. Here is a little information about the assay.

Continue reading

Glycosyltransferases: What’s New in GT Assays?

In his 2014 blog, “Why We Care About Glycosyltransferases” Michael Curtin, Promega Global Product Manager for Cell Signaling, wrote:

“Glycobiology is the study of carbohydrates and their role in biology. Glycans, defined as ‘compounds consisting of a large number of monosaccharides linked glycosidically’ are present in all living cells; They coat cell membranes and are integral components of cell walls. They play diverse roles, including critical functions in cell signaling, molecular recognition, immunity and inflammation. They are the cell-surface molecules that define the ABO blood groups and must be taken into consideration to ensure successful blood transfusions.

The process by which a sugar moiety is attached to a biological compound is referred to as glycosylation. Protein glycosylation is a form of post-translational modification, which is important for many biological processes and often serves as an analog switch that modulates protein activity. The class of enzymes responsible for transferring the sugar moiety onto proteins is called a glycosyltransferase (GT).”

Continue reading

Ancient Images of Dogs Include Restraints?

This dog is wearing a leash.

You, like me, may occasionally find youself in need of a canine control device. While I’m not a fan of the dog tie out, I do walk dogs on leash—as is required by our county and city government here in Madison, WI.

If you have read Temple Grandin’s books about dogs, you might feel a tug at your heartstrings while enduring a tug on the leash. Aren’t dogs meant to run freely? Don’t we love to watch them run? Are leashes humane?

When walking dogs I feel the need to protect them, but also a desire to let them live like dogs, sniffing, marking and other behaviors that are all limited when the dog is leashed.

When a report in Science last week showed evidence that our ancient ancestors were using leashes 8,000-9,000 years ago I was: 1) surprised; and 2) felt vindicated from self-imposed dog owner guilt.

Continue reading

H7N9 Influenza Virus: A Perfect Pathogen?

Artist’s rendition of a virus particle.

It’s late October and here in Wisconsin, like many of you, we are experiencing a change of seasons, with the associated drop in temperatures, changes in leaf color and later this week, Halloween.

Another thing that comes with fall is the start of cold and flu season. By “flu”, I mean influenza, caused by avian influenza viruses of the H-N type. Recent research results by teams at UWI-Madison and in Japan, makes the coming influenza season potentially more scary than usual.

In a recent Cell Host & Microbe paper, M. Imai et al. study a seemingly more virulent version of H7N9 avian influenza virus that is startling in its ability to spread from infected to healthy animal models. Based on a current epidemic of H7N9, human-to-human transmission with this strain is increasing. Continue reading

Your New Best Research Partner: The Structural Genomics Consortium

Research surrounding drug discovery has historically been highly competitive and expensive. Unfortunately, many late-stage drug failures have occurred over recent years, often due to lack of efficacy. These failures have left the industry searching for new means by which to improve early drug discovery efforts aimed at understanding the drug target and its role in disease. One idea that is gaining traction is partnerships to openly share information at the early, precompetitive stages of drug discovery.

I used to think of open access only in terms of publishing data and information—online sites where you could freely access data without a subscription or membership, and without payment.

Structural Genomics Consortium logo.

Meet the Structural Genomics Consortium (SGC), the international partnership that’s taking open access to a new level in order to advance scientific research for scientists working in a variety of disciplines—structural genomics and beyond. The SGC might just become your new, best laboratory research partner. Continue reading

Cytotoxicity Testing of 9,667 Tox21 Compounds using Two Real-Time Assays by Promega

A recent paper in PLOS One demonstrated real-time cytotoxicity profiling of approximately 10,000 chemical compounds in the Tox21 compound library, using two Promega assays, RealTime-Glo™ MT Cell Viability Assay and CellTox™ Green Cytotoxicity Assay. This is exciting to me, a science writer working at Promega; exciting because it’s tricky figuring out how to write about the utility of our products without sounding like an evangelist.

I don’t know about you, but I tend to shut out evangelists and their messages.

Instead of me telling you about real-time viability and cytotoxicity assays from Promega, here is an example of their use in Tox21 chemical compound library research.

What is the Tox21 compound library?
As described in the article by Hsieh, J-H. et al. (2017) in PLOS One:
“The Toxicology in the 21st Century (Tox21) program is a federal collaboration among the National Institutes of Health, including the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences and the National Center for Advancing Translational Sciences, the Environmental Protection Agency, and the Food and Drug Administration. Tox21 researchers utilize a screening method called high throughput screening (HTS) that uses automated methods to quickly and efficiently test chemicals for activity across a battery of assays that target cellular processes. These assays are useful for rapidly evaluating large numbers of chemicals to provide insight on potential human health effects.” Continue reading